【題目】如圖,將矩形紙片ABCD置于直角坐標(biāo)系中,點(diǎn)A(4,0),點(diǎn)B(0,3),點(diǎn)D(異于點(diǎn)B、C)為邊BC上動(dòng)點(diǎn),過(guò)點(diǎn)O、D折疊紙片,得點(diǎn)B′和折痕OD.過(guò)點(diǎn)D再次折疊紙片,使點(diǎn)C落在直線DB′上,得點(diǎn)C′和折痕DE,連接OE,設(shè)BD=t.
(1)當(dāng)t=1時(shí),求點(diǎn)E的坐標(biāo);
(2)設(shè)S四邊形OECB=s,用含t的式子表示s(要求寫(xiě)出t的取值范圍);
(3)當(dāng)OE取最小值時(shí),求點(diǎn)E的坐標(biāo).
【答案】(1)(4,2);(2)S=(0<t<4);(3)(4,).
【解析】
試題分析:(1)根據(jù)折疊的性質(zhì)和全等三角形的判定定理證明△BOD≌△CDE,求出CE,計(jì)算出AE,得到點(diǎn)E的坐標(biāo);
(2)根據(jù)相似三角形的性質(zhì)用t表示出CE,根據(jù)梯形的面積公式用t表示S;
(3)根據(jù)二次函數(shù)的性質(zhì)求出AE的最小值,求出點(diǎn)E的坐標(biāo).
試題解析:(1)由折疊的性質(zhì)可知,∠ODB=∠ODB′,∠EDC=∠EDC′,∴∠ODE=90°,∴∠BDO+∠CDE=90°,又∠BDO+∠BOD=90°,∴∠BOD=∠CDE,∵BD=t=1,BC=4,∴CD=3,又OB=3,∴OB=CD,在△BOD和△CDE中,∵∠B=∠C,OB=CD,∠BOD=∠CDE,∴△BOD≌△CDE,∴CE=BD=1,∴AE=AC﹣CE=2,∴點(diǎn)E的坐標(biāo)為(4,2);
(2)∵BD=t,∴DC=BC﹣BD=4﹣t,由(1)得,∠BOD=∠CDE,又∠B=∠C=90°,∴△ODB∽△DCE,∴,即,解得,CE=,∴S=×(CE+OB)×BC=×(+3)×4,∴S=(0<t<4);
(3)在Rt△OEA中,OE2=OA2+AE2=42+AE2,∴當(dāng)AE最小時(shí),OE最小,由(2)得,CE=,∴AE=AC﹣CE==,當(dāng)t=2時(shí),AE的最小值為,此時(shí)點(diǎn)E的坐標(biāo)為(4,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過(guò)第2011次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角坐標(biāo)系第二象限內(nèi)的點(diǎn)P(x2+2x,3)與另一點(diǎn)Q(x+2,y)關(guān)于原點(diǎn)對(duì)稱(chēng),試求x+2y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,△A1B1C1向右平移6個(gè)單位,再向上平移2個(gè)單位得到△A2B2C2.
(1)畫(huà)出△A1B1Cl和△A2B2C2;
(2)P(a,b)是△ABC的AC邊上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)分別為P1、P2,請(qǐng)寫(xiě)出點(diǎn)P1、P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)(b,c為常數(shù))的圖象經(jīng)過(guò)點(diǎn)A(3,1),點(diǎn)C(0,4),頂點(diǎn)為點(diǎn)M,過(guò)點(diǎn)A作AB∥x軸,交y軸于點(diǎn)D,交該二次函數(shù)圖象于點(diǎn)B,連結(jié)BC.
(1)求該二次函數(shù)的解析式及點(diǎn)M的坐標(biāo);
(2)若將該二次函數(shù)圖象向下平移m(m>0)個(gè)單位,使平移后得到的二次函數(shù)圖象的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)點(diǎn)P是直線AC上的動(dòng)點(diǎn),若點(diǎn)P,點(diǎn)C,點(diǎn)M所構(gòu)成的三角形與△BCD相似,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo)(直接寫(xiě)出結(jié)果,不必寫(xiě)解答過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是40元時(shí),銷(xiāo)售量是600件,而銷(xiāo)售單價(jià)每漲1元,就會(huì)少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷(xiāo)售單價(jià)為x元(x>40),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷(xiāo)售量y件和銷(xiāo)售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫(xiě)在表格中:
(2)在(1)問(wèn)條件下,若商場(chǎng)獲得了10000元銷(xiāo)售利潤(rùn),求該玩具銷(xiāo)售單價(jià)x應(yīng)定為多少元.
(3)在(1)問(wèn)條件下,若玩具廠規(guī)定該品牌玩具銷(xiāo)售單價(jià)不低于44元,且商場(chǎng)要完成不少于540件的銷(xiāo)售任務(wù),求商場(chǎng)銷(xiāo)售該品牌玩具獲得的最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com