分析 (1)由等邊三角形的性質(zhì)知∠BAC=60°,AB=AC,由旋轉(zhuǎn)的性質(zhì)知∠DAE=60°,AE=AD,從而得∠EAB=∠DAC,再證△EAB≌△DAC可得答案;
(2)由∠DAE=60°,AE=AD知△EAD為等邊三角形,即∠AED=60°,繼而由∠AEB=∠ADC=105°可得.
解答 解:(1)∵△ABC是等邊三角形,
∴∠BAC=60°,AB=AC.
∵線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,
∴∠DAE=60°,AE=AD.
∴∠BAD+∠EAB=∠BAD+∠DAC.
∴∠EAB=∠DAC.
在△EAB和△DAC中,
∵$\left\{\begin{array}{l}{AB=AC}\\{∠EAB=∠DAC}\\{AE=AD}\end{array}\right.$,
∴△EAB≌△DAC.
∴∠AEB=∠ADC.
(2)如圖,
∵∠DAE=60°,AE=AD,
∴△EAD為等邊三角形.
∴∠AED=60°,
又∵∠AEB=∠ADC=105°.
∴∠BED=45°.
點評 本題主要考查等邊三角形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)及全等三角形的判定與性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)證得三角形的全等是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2(x-3)2+2 | B. | y=2(x+3)2+2 | C. | y=2(x-3)2-2 | D. | y=2(x+3)2-2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}x+\frac{2}{5}$x=1 | B. | $\frac{1}{5}x+\frac{2}{5}$x+1=x | C. | $\frac{1}{5}x+\frac{2}{5}$x-1+1=x | D. | $\frac{1}{5}x+\frac{2}{5}$x+1+1=x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3cm,10cm,5cm | B. | 4cm,8cm,4cm | C. | 5cm,13cm,12cm | D. | 2cm,7cm,4cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com