【題目】已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上運動,當△ODP是腰長為5的等腰三角形時,則P點的坐標為

【答案】(2,4)或(3,4)或(8,4)
【解析】解:當OD=PD(P在右邊)時,根據(jù)題意畫出圖形,如圖所示:

過P作PQ⊥x軸交x軸于Q,在直角三角形DPQ中,PQ=4,PD=OD= OA=5,

根據(jù)勾股定理得:DQ=3,故OQ=OD+DQ=5+3=8,則P1(8,4);

當PD=OD(P在左邊)時,根據(jù)題意畫出圖形,如圖所示:

過P作PQ⊥x軸交x軸于Q,在直角三角形DPQ中,PQ=4,PD=OD=5,

根據(jù)勾股定理得:QD=3,故OQ=OD﹣QD=5﹣3=2,則P2(2,4);

當PO=OD時,根據(jù)題意畫出圖形,如圖所示:

過P作PQ⊥x軸交x軸于Q,在直角三角形OPQ中,OP=OD=5,PQ=4,

根據(jù)勾股定理得:OQ=3,則P3(3,4),

綜上,滿足題意的P坐標為(2,4)或(3,4)或(8,4).

所以答案是:(2,4)或(3,4)或(8,4)

【考點精析】根據(jù)題目的已知條件,利用等腰三角形的性質(zhì)和勾股定理的概念的相關知識可以得到問題的答案,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知四個數(shù):a= b= (3) , c= (1)2019, d=

(1) 化簡ab,c,d a= b= ,c= ,d= ;

(2) 把這四個數(shù)在數(shù)軸上分別表示出來:

3)用 a,bc,d 連接起來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC的外側(cè)作直線AP,點C關于直線AP的對稱點為點D,連接AD,BD,其中BD交直線AP于點E.

(1)依題意補全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);

(3)連結CE,寫出AE, BE, CE之間的數(shù)量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,B=90°,點EAC的中點,AC=2AB,BAC的平分線ADBC于點D,作AFBC,連接DE并延長交AF于點F,連接FC.

求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,點為坐標原點,點分別在軸正半軸和軸正半軸上,且,點從原點出發(fā)以每秒個單位長度的速度沿x軸正半軸方向運動.

1)求點的坐標.

2)連接設三角形的面積為,點的運動時間為,請用含的式子表示并直接寫出的取值范圍.

3)當點上運動時,將線段沿軸正方向平移,使點與點重合,點的對應點為點,連接,將線段沿軸正方向平移,使點與點重合,點的對應點為點,取的中點是否存在的值,使三角形的面積等于三角形的面積?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為了增強學生體質(zhì),全面實施“學生飲用奶”營養(yǎng)工程.某品牌牛奶供應商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學生飲用.浠馬中學為了了解學生對不同口味牛奶的喜好,對全校訂購牛奶的學生進行了隨機調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計圖:

(1)本次被調(diào)查的學生有名;
(2)補全上面的條形統(tǒng)計圖1,并計算出喜好“菠蘿味”牛奶的學生人數(shù)在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)該校共有1200名學生訂購了該品牌的牛奶,牛奶供應商每天只為每名訂購牛奶的學生配送一盒牛奶.要使學生每天都喝到自己喜好的口味的牛奶,牛奶供應商每天送往該校的牛奶中,草莓味要比原味多送多少盒?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小明同學化簡代數(shù)式a+2+ 的過程,請仔細閱讀并解答所提出的問題. a+2+ =2+a+ …第一步
=(2+a)(2﹣a)+a2…第二步
=2﹣a2+a2…第三步
=2…第四步
(1)小明的解法從第步開始出現(xiàn)錯誤,正確的化簡結果是
(2)原代數(shù)式的值能等于2嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E是ABCD的邊CD的中點,延長AE交BC的延長線于點F.

(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求證:四邊形ABCD是矩形.

(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?

查看答案和解析>>

同步練習冊答案