已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:
x….-10124
y….0-3-435….
(1)求該二次函數(shù)的關(guān)系式;
(2)若A(-4,y1),B(
11
2
,y2)兩點(diǎn)都在該函數(shù)的圖象上,試比較y1與y2的大。
(3)若A(m-1,y1),B(m+1,y2)兩點(diǎn)都在該函數(shù)的圖象上,試比較y1與y2的大。
(1)把(-1,0)、(0,-3)、(1,-4)代入函數(shù)解析式y(tǒng)=ax2+bx+c中,可得
a-b+c=0
c=-3
a+b+c=-4
,
解得
a=1
b=-2
c=-3
,
那么二次函數(shù)的解析式是y=x2-2x-3;

(2)把x=-4代入函數(shù),可得y1=21,再把x=
11
2
代入函數(shù),可得y2=
65
4
,
∴y1>y2;
(3)把x=m-1代入函數(shù)解析式可得y1=m2-4m,
再把x=m+1代入函數(shù)可得y2=m2-4,
y1-y2=-4m+4>0即m<1時(shí),y1>y2
當(dāng)m>1時(shí),y1<y2
當(dāng)m=1時(shí),y1=y2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.其中點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸的負(fù)半軸上,線段OA、OC的長(zhǎng)(OA<OC)是方程x2-5x+4=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=1.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的解析式;
(3)若點(diǎn)D是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B不重合),過點(diǎn)D作DEBC交AC于點(diǎn)E,連接CD,設(shè)BD的長(zhǎng)為m,△CDE的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時(shí)D點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,拋物線經(jīng)過點(diǎn)A(12,0)、B(-4,0)、C(0,-12).頂點(diǎn)為M,過點(diǎn)A的直線y=kx-4交y軸于點(diǎn)N.
(1)求該拋物線的函數(shù)關(guān)系式和對(duì)稱軸;
(2)試判斷△AMN的形狀,并說(shuō)明理由;
(3)將AN所在的直線l向上平移.平移后的直線l與x軸和y軸分別交于點(diǎn)D、E(如圖②).當(dāng)直線l平移時(shí)(包括l與直線AN重合),在拋物線對(duì)稱軸上是否存在點(diǎn)P,使得△PDE是以DE為直角邊的等腰直角三角形?若存在,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,己知拋物線y=x2+px+q與x軸交于A、B兩點(diǎn),∠ACB=90°,交y軸負(fù)半軸于C點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),且
1
OA
-
1
OB
=
2
OC

(1)求拋物線的解析式,
(2)求△ABC的外接圓面積;
(3)設(shè)拋物線y=x2+px+q的頂點(diǎn)為D,求四邊形ACDB的面積;
(4)在拋物線y=x2+px+q上是否存在點(diǎn)P,使得△PAB的面積為2
2
?如果有,這樣的點(diǎn)有幾個(gè)?寫出它們的坐標(biāo);如果沒有,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c過點(diǎn)A(-4,-3),與y軸交于點(diǎn)B,對(duì)稱軸是x=-3,請(qǐng)解答下列問題:
(1)求拋物線的解析式.
(2)若和x軸平行的直線與拋物線交于C,D兩點(diǎn),點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求△BCD的面積.
注:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是x=-
b
2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某瓜果基地市場(chǎng)部為指導(dǎo)某地某種蔬菜的生產(chǎn)和銷售,在對(duì)歷年市場(chǎng)行情和生產(chǎn)情況進(jìn)行了調(diào)查的基礎(chǔ)上,對(duì)今年這種蔬菜上市后的市場(chǎng)售價(jià)和生產(chǎn)成本進(jìn)行了預(yù)測(cè),提供了兩個(gè)方面的信息.如圖甲、乙兩圖.
注:兩圖中的每個(gè)實(shí)心黑點(diǎn)所對(duì)應(yīng)的縱坐標(biāo)分別指相應(yīng)月份的售價(jià)和成本,生產(chǎn)成本6月份最低;圖甲的圖象是線段,圖乙的圖象是拋物線.
(1)在3月份出售這種蔬菜,每千克的收益(收益=售價(jià)-成本)是多少元
(2)設(shè)x月份出售這種蔬菜,每千克收益為y元,求y關(guān)于x的函數(shù)解析式;
(3)問哪個(gè)月出售這種蔬菜,每千克的收益最大?簡(jiǎn)單說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+mc(a≠0)的圖象經(jīng)過正方形ABOC的三個(gè)頂點(diǎn),且ac=-2,則m的值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,P是拋物線y2=x2-6x+9對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),直線x=t平行于y軸,分別與直線y=x、拋物線y2交于點(diǎn)A、B.若△ABP是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿足條件的t的值,則t=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案