【題目】如圖,△ACB和△DCE均為等腰三角形,點A、D、E在同一條直線上,BC和AE相交于點O,連接BE,若∠CAB=∠CBA=∠CDE=∠CED=50°。
(1)求證:AD=BE;
(2)求∠AEB。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一個木制正方體的表面涂上顏色,然后將正方形分割成27個大小相同的小正方體,從這些小正方體中任意取出一個,求取出的小正方體;
(1)只有一面涂有顏色的概率;
(2)至少有兩面涂有顏色的概率;
(3)各個面都沒有顏色的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學七年級有350名師生需要租車去野外進行拓展訓練,現(xiàn)有A、B兩種類型號的車可供選擇,已知1輛A型車和2輛B型車可載110人,2輛A型車和1輛B型車可載100人。
(1)A、B型車每輛可分別載多少人?
(2)要始每輛車都恰好坐滿且正好運完這些師生,請問你有哪幾種設計租車方案,請一一列舉出來。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于實數(shù),定義兩種新運算“※”和“”: ※,(其中為常數(shù),且,若對于平面直角坐標系中的點,有點的坐標※,與之對應,則稱點的“衍生點”為點.例如:的“2衍生點”為,即.
(1)點的“3衍生點”的坐標為 ;
(2)若點的“5衍生點” 的坐標為,求點的坐標;
(3)若點的“衍生點”為點,且直線平行于軸,線段的長度為線段長度的3倍,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知ABC中∠A=60°,AB=2cm,AC=6cm,點P、Q分別是邊AB、AC上的動點,點P從頂點A沿AB以1cm/s的速度向點B運動,同時點Q從頂點C沿CA以3cm/s的速度向點A運動,當點P到達點B時點P、Q都停止運動.設運動的時間為t秒.
(1)當t為何值時AP=AQ;
(2)是否存在某一時刻使得△APQ是直角三角形,若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:
①4ac<b2;
②方程 的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當y>0時,x的取值范圍是﹣1≤x<3
⑤當x<0時,y隨x增大而增大
其中結論正確的個數(shù)是( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在10×10的正方形網(wǎng)格中(每個小正方形的邊長都為1個單位),△ABC的三個頂點都在格點上.建立如圖所示的直角坐標系,
請在圖中標出△ABC的外接圓的圓心P的位置,并填寫: 圓心P的坐標:P( , )
(2)將△ABC繞點A逆時針旋轉90°得到△ADE,畫出圖
形,并求△ABC掃過的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動點E、F分別從點B、D同時出發(fā),以1cm/s的速度向點A、C運動,連接AF、CE,取AF、CE的中點G、H,連接GE、FH.設運動的時間為ts(0<t<4).
(1)求證:AF∥CE;
(2)當t為何值時,四邊形EHFG為菱形;
(3)試探究:是否存在某個時刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中, , °,點D是線段BC上的動點,將線段AD繞點A順時針旋轉50°至,連接.已知AB2cm,設BD為x cm,B為y cm.
小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究,下面是小明的探究過程,請補充完整.(說明:解答中所填數(shù)值均保留一位小數(shù))
(1)通過取點、畫圖、測量,得到了與的幾組值,如下表:
0.5 | 0.7 | 1.0 | 1.5 | 2.0 | 2.3 | ||
1.7 | 1.3 | 1.1 | 0.7 | 0.9 | 1.1 |
(2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象.
(3)結合畫出的函數(shù)圖象,解決問題:
線段的長度的最小值約為__________ ;
若 ,則的長度x的取值范圍是_____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com