已知拋物線,
【小題1】若n="-1," 求該拋物線與軸的交點坐標;
【小題2】當時,拋物線與軸有且只有一個公共點,求n的取值范圍.


【小題1】解:(1)當n=-1時,拋物線為
方程的兩個根為:x=-1或x=
∴該拋物線與軸公共點的坐標是. 
【小題2】∵拋物線與軸有公共點.
∴對于方程 ,判別式△=4-12n≥0,∴n≤.                                      
①當時,由方程,解得
此時拋物線為軸只有一個公共點
②當n<時,時,=1+n時,
由已知時,該拋物線與軸有且只有一個公共點,考慮其對稱軸為
應有≤0,且>0   即1+n≤0,且5+n>0  
解得:-5<n≤-1.                   
綜合①、②得n的取值范圍是:或-5<n≤-1.     

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011-2012年北京市三帆中學九年級上學期期中測試數(shù)學卷 題型:解答題

已知拋物線,
【小題1】(1)若,,求該拋物線與軸公共點的坐標;
【小題2】(2)若,且當時,拋物線與軸有且只有一個公共點,求的取值范圍;
【小題3】(3)若,且時,對應的;時,對應的,試判斷當時,拋物線與軸是否有公共點?若有,有幾個,證明你的結論;若沒有,闡述理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年北京二龍路中學九年級第一學期期中測試數(shù)學卷 題型:解答題

已知拋物線!拘☆}1】<1>求拋物線頂點M的坐標;
【小題2】 <2>若拋物線與x軸的交點分別為點A、B(點A在點B的左邊),與y軸交于點C,點N為線段BM上的一點,過點Nx軸的垂線,垂足為點Q.當點N在線段BM上運動時(點N不與點B,點M重合),設NQ的長為t,四邊形NQAC的面積為S,求St之間的函數(shù)關系式及自變量t的取值范圍;
【小題3】 <3>在對稱軸右側的拋物線上是否存在點P,使△PAC為直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆北京通州區(qū)中考模擬數(shù)學卷 題型:解答題

已知拋物線
【小題1】求拋物線頂點M的坐標;
【小題2】若拋物線與x軸的交點分別為點A、B(點A在點B的左邊),與y軸交于點C,點N為線段BM上的一點,過點N作x軸的垂線,垂足為點Q.當點N在線段BM上運動時(點N不與點B,點M重合),設NQ的長為t,四邊形NQAC的面積為S,求S與t之間的函數(shù)關系式及自變量t的取值范圍;
【小題3】在對稱軸右側的拋物線上是否存在點P,使△PAC為直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江蘇省寶應縣九年級網(wǎng)上閱卷適應性測試數(shù)學卷(帶解析) 題型:解答題

已知拋物線
【小題1】試說明:無論m為何實數(shù),該拋物線與x軸總有兩個不同的交點;
【小題2】如圖,當拋物線的對稱軸為直線x=3時,拋物線的頂點為點C,直線y=x﹣1與拋物線交于A、B兩點,并與它的對稱軸交于點D.
①拋物線上是否存在一點P使得四邊形ACPD是正方形?若存在,求出點P的坐標;若不存在,說明理由;
②平移直線CD,交直線AB于點M,交拋物線于點N,通過怎樣的平移能使得以C、D、M、N為頂點的四邊形是平行四邊形?(直接寫出平移的方法,不要說明理由)

查看答案和解析>>

同步練習冊答案