(2010•蘇州)如圖,在△ABC中,∠C=90°,AC=8,BC=6.P是AB邊上的一個動點(異于A、B兩點),過點P分別作AC、BC邊的垂線,垂足為M、N.設(shè)AP=x.
(1)在△ABC中,AB=______;
(2)當(dāng)x=______時,矩形PMCN的周長是14;
(3)是否存在x的值,使得△PAM的面積、△PBN的面積與矩形PMCN的面積同時相等?請說出你的判斷,并加以說明.

【答案】分析:(1)利用勾股定理求AB;
(2)利用MP∥BC和NP∥AC,可得到,將AP=x,AB=10,BC=6,AC=8,BP=10-x
代入式中就能得到PM和PN關(guān)于x的表達(dá)式.再由矩形周長=2(PM+PN),求出x的值.
(3)當(dāng)P為AB的中點時,△PAM的面積與△PBN的面積才相等,再求出矩形PMCN的面積,進(jìn)行判斷.
解答:解:(1)∵△ABC為直角三角形,且AC=8,BC=6,
∴AB=

(2)∵PM⊥AC  PN⊥BC
∴MP∥BC   AC∥PN(垂直于同一條直線的兩條直線平行),

∵AP=x,AB=10,BC=6,AC=8,BP=10-x,
∴PM=
PN==8-
∴矩形PMCN周長=2(PM+PN)=2(x+8-x)=14.
∴x=5.

(3)∵PM⊥AC,PN⊥BC,
∴∠AMP=∠PNB=90°,
∴AC∥PN.
∴∠A=∠NPB.
∴△AMP∽△PNB.
∴當(dāng)P為AB中點,即AP=PB時,△AMP≌△PNB,
此時,S△AMP=S△PNB=,
而矩形PMCN面積=PM•MC=3×4=12,
∴不存在能使得△PAM的面積、△PBN的面積與矩形PMCN面積同時相等的x的值.
點評:本題考查了相似三角形性質(zhì)、面積和矩形面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年浙江省溫州市永嘉縣甌北鎮(zhèn)四校聯(lián)考九年級(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•蘇州)如圖,四邊形OABC是面積為4的正方形,函數(shù)(x>0)的圖象經(jīng)過點B.
(1)求k的值;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設(shè)線段MC′、NA′分別與函數(shù)(x>0)的圖象交于點E、F,求線段EF所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省溫州市永嘉縣甌北二中九年級(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•蘇州)如圖,四邊形OABC是面積為4的正方形,函數(shù)(x>0)的圖象經(jīng)過點B.
(1)求k的值;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設(shè)線段MC′、NA′分別與函數(shù)(x>0)的圖象交于點E、F,求線段EF所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•蘇州)如圖,以A為頂點的拋物線與y軸交于點B、已知A、B兩點的坐標(biāo)分別為(3,0)、(0,4).
(1)求拋物線的解析式;
(2)設(shè)M(m,n)是拋物線上的一點(m、n為正整數(shù)),且它位于對稱軸的右側(cè).若以M、B、O、A為頂點的四邊形四條邊的長度是四個連續(xù)的正整數(shù),求點M的坐標(biāo);
(3)在(2)的條件下,試問:對于拋物線對稱軸上的任意一點P,PA2+PB2+PM2>28是否總成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•蘇州)如圖,四邊形OABC是面積為4的正方形,函數(shù)(x>0)的圖象經(jīng)過點B.
(1)求k的值;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設(shè)線段MC′、NA′分別與函數(shù)(x>0)的圖象交于點E、F,求線段EF所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省蘇州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•蘇州)如圖,四邊形OABC是面積為4的正方形,函數(shù)(x>0)的圖象經(jīng)過點B.
(1)求k的值;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設(shè)線段MC′、NA′分別與函數(shù)(x>0)的圖象交于點E、F,求線段EF所在直線的解析式.

查看答案和解析>>

同步練習(xí)冊答案