如圖1,已知矩形ABED,點C是邊DE的中點,且AB=2AD.
(1)判斷△ABC的形狀,并說明理由;
(2)保持圖1中△ABC固定不變,繞點C旋轉DE所在的直線MN到圖2中(當垂線段AD、BE在直線MN的同側),試探究線段AD、BE、DE長度之間有什么關系?并給予證明;
(3)保持圖2中△ABC固定不變,繼續(xù)繞點C旋轉DE所在的直線MN到圖3中的位置(當垂線段AD、BE在直線MN的異側).試探究線段AD、BE、DE長度之間有什么關系?并給予證明.
(1)△ABC是等腰直角三角形.理由如下:
在△ADC與△BEC中,AD=BE,∠D=∠E=90°,DC=EC,
∴△ADC≌△BEC(SAS),
∴AC=BC,∠DCA=∠ECB.
∵AB=2AD=DE,DC=CE,
∴AD=DC,
∴∠DCA=45°,
∴∠ECB=45°,
∴∠ACB=180°-∠DCA-∠ECB=90°.
∴△ABC是等腰直角三角形.

(2)DE=AD+BE.理由如下:
在△ACD與△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC,
∴△ACD≌△CBE(AAS),
∴AD=CE,DC=EB.
∴DC+CE=BE+AD,
即DE=AD+BE.

(3)DE=BE-AD.理由如下:
在△ACD與△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC,
∴△ACD≌△CBE(AAS),
∴AD=CE,DC=EB.
∴DC-CE=BE-AD,
即DE=BE-AD.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,AD=DC=BC,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如果等腰三角形一腰上的高與另一腰的夾角為45°,那么這個等腰三角形的底角度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在△ABC中,其兩個內角如下,則能判定△ABC為等腰三角形的是( 。
A.∠A=40°,∠B=50B.∠A=40°,∠B=60°
C.∠A=40°,∠B=70D.∠A=40°,∠B=80°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,等腰三角形ABC中,∠BAC=90°,在底邊BC上截取BD=AB,過D作DE⊥BC交AC于E,連接AD,則圖中等腰三角形的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在△ABC中,∠A=80°,當∠B=______時,△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在等腰△ABC中,AB=AC,一腰上中線BD將這個三角形的周長分為16和8的兩部分,求這個等腰三角形的腰長與底邊長.(用方程思想解決)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知等腰三角形的周長為18cm,腰長為xcm,則x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,AB=AC,∠A=36°,BD,CE是角平分線,則圖中的等腰三角形共有( 。
A.8個B.7個C.6個D.5個

查看答案和解析>>

同步練習冊答案