【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在的正半軸上,點(diǎn)B的坐標(biāo)為(3,4)一次函數(shù)的圖象與邊OC、AB分別交于點(diǎn)D、E,并且滿足OD= BE.點(diǎn)M是線段DE上的一個(gè)動(dòng)點(diǎn).
(1)求b的值;
(2)連結(jié)OM,若三角形ODM的面積與四邊形OAEM的面積之比為1:3,求點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)N是軸上方平面內(nèi)的一點(diǎn),以O(shè)、D、M、N為頂點(diǎn)的四邊形是菱形,求點(diǎn)N的坐標(biāo).
【答案】(1);
(2)M(1, );
(3)當(dāng)四邊形OMDN是菱形時(shí),M(,)N(,)
【解析】分析:(1)首先在一次函數(shù)的解析式中令x=0,即可求得D的坐標(biāo),則OD的長(zhǎng)度即可求得,OD=b,則E的坐標(biāo)即可利用b表示出來(lái),然后代入一次函數(shù)解析式即可得到關(guān)于b的方程,求得b的值;(2)首先求得四邊形OAED的面積,則△ODM的面積即可求得,設(shè)出M的橫坐標(biāo),根據(jù)三角形的面積公式即可求得M的橫坐標(biāo),進(jìn)而求得M的坐標(biāo);(3)分成四邊形OMDN是菱形和四邊形OMND是菱形兩種情況進(jìn)行討論,四邊形OMDN是菱形時(shí),M是OD的中垂線與DE的交點(diǎn),M關(guān)于OD的對(duì)稱點(diǎn)就是N;四邊形OMND是菱形,OM=OD,M在直角DE上,設(shè)出M的坐標(biāo),根據(jù)OM=OD即可求得M的坐標(biāo),則根據(jù)ON和DM的中點(diǎn)重合,即可求得N的坐標(biāo).
本題解析:(1)y= x+b中,令x=0,解得y=b,則D的坐標(biāo)是(0,b),OD=b,
∵OD=BE,
∴BE=b,則E的坐標(biāo)是(3,4b),
把E的坐標(biāo)代入y=x+b得4b=2+b,
解得:b=3;
(2) ,
∵三角形ODM的面積與四邊形OAEM的面積之比為1:3,
∴ .
設(shè)M的橫坐標(biāo)是a,則 ×3a=1.5,解得:a=1,
把x=a=1代入y=x+3得y=×+3= .
則M的坐標(biāo)是(1, );
(3)當(dāng)四邊形OMDN是菱形時(shí),如圖(1),M的縱坐標(biāo)是 ,把y=代入y=x+3,得x+3=,解得:x=,
則M的坐標(biāo)是(,),
則N的坐標(biāo)是(,);
當(dāng)四邊形OMND是菱形時(shí),如圖(2)OM=OD=3,設(shè)M的橫坐標(biāo)是m,則縱坐標(biāo)是m+3,則,
解得:m=或0(舍去).
則M的坐標(biāo)是(,).
則DM的中點(diǎn)是(,).
則N的坐標(biāo)是(,).
故N的坐標(biāo)是(,)或(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算(-2x2y)3的結(jié)果是( )
A、-8x6y3 B、6x6y3 C、-8x5y3 D、-6x5y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】ABC與DEF的相似比為1:3,則ABC與DEF的面積比為( )
A. 1:3 B. 1:6 C. 1:9 D. 1:16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
(1)如果,AC垂直平分BD.那么,CA平分∠BAD嗎?CA平分∠BCD嗎?
(2)如果,CA平分∠BAD,且CB⊥AB,CD⊥AD.那么,AC垂直平分BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 y 2 與 x 1成正比例,且 x 3時(shí) y 4 。
(1)求 y 與 x 之間的函數(shù)關(guān)系式;
(2)當(dāng) y 1時(shí),求 x 的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】248-1能夠被60~70之間的兩個(gè)數(shù)整除,則這兩個(gè)數(shù)是______________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com