已知:如圖,在△ABC中,AB=AC,點(diǎn)D、E分別在邊AC、AB上,DA=DB,BD與CE相交于點(diǎn)F,∠AFD=∠BEC.
求證:(1)AF=CE;
(2)BF2=EF•AF.

【答案】分析:(1)根據(jù)全等三角形的判定方法得出△BFA≌△AEC(AAS),即可得出答案;
(2)根據(jù)∠EAF=∠ECA,∠FEA=∠AEC,得出△EFA∽△EAC,進(jìn)而求出,即可得出BF2=EF•AF.
解答:(1)證明:∵DA=DB,
∴∠FBA=∠EAC,
∵∠AFD=∠BEC,
∴180°-∠AFD=180°-∠BEC,
即∠BFA=∠AEC.
∵在△BFA和△AEC中

∴△BFA≌△AEC(AAS).
∴AF=CE.

(2)解:∵△BFA≌△AEC,
∴BF=AE.
∵∠EAF=∠ECA,∠FEA=∠AEC,
∴△EFA∽△EAC.

∴EA2=EF•CE.
∵EA=BF,CE=AF,
∴BF2=EF•AF.
點(diǎn)評(píng):此題主要考查了相似三角形的判定與性質(zhì)以及全等三角形的判定,根據(jù)已知得出∠BFA=∠AEC是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過(guò)A,D兩點(diǎn)作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:專項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案