如圖,在梯形ABCD中,AD//BC,E是BC的中點(diǎn),AD=5,BC=12,CD=,∠C=45°,點(diǎn)P是BC邊上一動(dòng)點(diǎn),設(shè)PB的長(zhǎng)為x.
1.當(dāng)x的值為_(kāi)___________時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為直角梯形
2.當(dāng)x的值為_(kāi)___________時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為平行四邊形;
3.點(diǎn)P在BC邊上運(yùn)動(dòng)的過(guò)程中,以P、A、D、E為頂點(diǎn)的四邊形能否構(gòu)成菱形?試說(shuō)明理由.
1.3或8
2.1或11
3.由(2)知,當(dāng)BP=11時(shí),以P、A、D、E為頂點(diǎn)的四邊形為菱形
解析:解:(1)如圖,分別過(guò)A、D作AM⊥BC于M,DN⊥CB于N,
∴AM=DN,AD=MN=5,
而CD=4 ,∠C=45°,
∴DN=CN=4=AM,
∴BM=CB-CN-MN=3,
若點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為直角梯形,
則∠APC=90°或∠DEB=90°,
當(dāng)∠APC=90°時(shí),
∴P與M重合,
∴BP=BM=3;
當(dāng)∠DEB=90°時(shí),
∴P與N重合,
∴BP=BN=8;
故當(dāng)x的值為3或8時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為直角梯形;
(2)若以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為平行四邊形,那么AD=PE,有兩種情況:
①當(dāng)P在E的左邊,
∵E是BC的中點(diǎn),
∴BE=6,
∴BP=BE-PE=6-5=1;
②當(dāng)P在E的右邊,
BP=BE+PE=6+5=11;
故當(dāng)x的值為1或11時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為平行四邊形;
(3)由(2)知,當(dāng)BP=11時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形是平行四邊形
∴EP=AD=5,
過(guò)D作DN⊥BC于N,
∵CD=4 ,∠C=45°,
則DN=CN=4,
∴NP=3.
∴DP=
∴EP=DP,
故此時(shí)▱PDAE是菱形.
即以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形能構(gòu)成菱形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、3cm | B、7cm | C、3cm或7cm | D、2cm |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com