【題目】已知:如圖,在□ABCD中,AE是BC邊上的高,將沿方向平移,使點E與點C重合,得.
(1)求證:;
(2)若,當AB與BC滿足什么數(shù)量關系時,四邊形是菱形?并說明理由.
注:(直角三角形中30°角所對直角邊等于斜邊的一半).
【答案】(1)證明見解析;(2)當BC=AB時,四邊形ABFG是菱形.
【解析】
試題分析:(1)根據(jù)平移的性質(zhì),可得:BE=FC,再證明Rt△ABE≌Rt△CDG可得:DG=FC;即可得到BE=DG;
(2)要使四邊形ABFG是菱形,須使AB=BF;根據(jù)條件找到滿足AB=BF的AB與BC滿足的數(shù)量關系即可.
試題解析:(1)∵四邊形ABCD是平行四邊形,
∴AB=CD.
∵AE是BC邊上的高,且CG是由AE沿BC方向平移而成.
∴CG⊥AD.
∴∠AEB=∠CGD=90°.
∵AE=CG,AB=CD,
∴Rt△ABE≌Rt△CDG.
∴BE=DG;
(2)當BC=AB時,四邊形ABFG是菱形.
證明:∵AB∥GF,AG∥BF,
∴四邊形ABFG是平行四邊形.
∵Rt△ABE中,∠B=60°,
∴∠BAE=30°,
∴BE=AB.(直角三角形中30°所對直角邊等于斜邊的一半)
∵BE=CF,BC=AB,
∴EF=AB.
∴AB=BF.
∴四邊形ABFG是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,一個無蓋的長方體盒子的棱長分別為,,,盒子的內(nèi)部頂點處有一只昆蟲甲,在盒子的內(nèi)部頂點處有一只昆蟲乙(盒壁的厚度忽略不計)假設昆蟲甲在頂點處靜止不動,請計算處的昆蟲乙沿盒子內(nèi)壁爬行到昆蟲甲處的最短路程,并畫出其最短路徑,簡要說明畫法
(2)如果(1)問中的長方體的棱長分別為,,如圖②,假設昆蟲甲從盒內(nèi)頂點以1厘米/秒的速度在盒子的內(nèi)部沿棱向下爬行,同時昆蟲乙從盒內(nèi)頂點以3厘米/秒的速度在盒壁的側面上爬行,那么昆蟲乙至少需要多長時間才能捕捉到昆蟲甲?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市從2018年開始大力發(fā)展旅游產(chǎn)業(yè).據(jù)統(tǒng)計,該市2018年旅游收入約為2億元.預計2020年旅游收入約達到2.88億元,設該市旅游收入的年平均增長率為x,下面所列方程正確的是( )
A. 2(1+x)2=2.88 B. 2x2=2.88 C. 2(1+x%)2=2.88 D. 2(1+x)+2(1+x)2=2.88
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】太陽與地球的平均距離大約是150 000 000千米,數(shù)據(jù)150 000 000用科學記數(shù)法表示為( )
A.1.5×108
B.1.5×109
C.0.15×109
D.15×107
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是AD的中點,∠EBC的平分線交CD于點F.將△DEF沿EF折疊,點D恰好落在BE上M點處,延長BC、EF交于點N, 有下列四個結論:① DF=CF;② BF⊥EN;③△BEN是等邊三角形;④ S△BEF=3S△DEF. 其中,正確的結論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com