△ABC為等邊三角形,邊長為2cm,D為BC中點(diǎn),△AEB是△ADC繞點(diǎn)A旋轉(zhuǎn)60°得到的,則∠BAE=
30
30
度.
分析:根據(jù)等邊三角形的性質(zhì)求出∠CAD,再根據(jù)旋轉(zhuǎn)變換只改變圖形的位置不改變圖形的形狀與大小可得∠BAE=∠CAD,從而得解.
解答:解:∵D為等邊三角形△ABC的邊BC的中點(diǎn),
∴∠CAD=
1
2
×60°=30°,
∵△AEB是△ADC繞點(diǎn)A旋轉(zhuǎn)60°得到,
∴∠BAE=∠CAD=30°.
故答案為:30.
點(diǎn)評:本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),熟記旋轉(zhuǎn)變換只改變圖形的位置不改變圖形的形狀與大小是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,△ABC為等邊三角形,P為三角形內(nèi)一點(diǎn),將△ABP繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)60°后與△ACP′重合,若AP=3,則PP′=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,△ABC為等邊三角形,D、E為AC和BC邊上的兩點(diǎn),且CD=CE,連接ED并延長到F,使AD=DF,連接AF、BD、CF,
(1)寫出圖中所有全等的三角形(不加字母和輔助線);
(2)從(1)中選一對全等三角形,說明全等的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,已知△ABC為等邊三角形,CF∥AB,點(diǎn)P為線段AB上任意一點(diǎn)(點(diǎn)P不與A、B重合),過點(diǎn)P作PE∥BC,分別交AC、CF于G、E.
(1)四邊形PBCE是平行四邊形嗎?為什么?
(2)求證:CP=AE;
(3)試探索:當(dāng)P為AB的中點(diǎn)時(shí),四邊形APCE是什么樣的特殊四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點(diǎn)P,BQ⊥AD與Q,PQ=4,PE=1.
(1)求證:△ABE≌△CAD;
(2)求證:∠BPQ=60°; 
(3)求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△ABC為等邊三角形,BD平分∠ABC,DE⊥BC于E,EC=1,則BC=
4
4

查看答案和解析>>

同步練習(xí)冊答案