在梯形ABCO中,OC∥AB,以O為原點建立平面直角坐標系,A、B、C三點的坐標分別是A(8,0),B(8,10),C(0,4).點D(4,7)為線段BC的中點,動點P從O點出發(fā)精英家教網(wǎng),以每秒1個單位的速度,沿折線OAB的路線運動,運動時間為t秒.
(1)求直線BC的解析式;
(2)設△OPD的面積為s,求出s與t的函數(shù)關系式,并指出自變量t的取值范圍;
(3)當t為何值時,△OPD的面積是梯形OABC的面積的
38
?
分析:用待定系數(shù)法設出直線BC的解析式為Y=kx+b,代入求出一次函數(shù)的解析式是y=
3
4
x+4,再用面積公式s=
1
2
ab求出P的坐標,進一步求出s與t的關系式
解答:解:(1)設直線BC的解析式為y=kx+b,
將C(0,4),B(8,10)代入得:
4=0×k+b
10=8×k+b
,
解得:
k=
3
4
b=4
,
即y=
3
4
x+4,
所以直線BC的解析式為:y=
3
4
x+4.

(2)有兩種情況:
①當P在OA上運動時;
∴OP=t×1=t,△OPD的邊OP上的高是7,
∴△OPD的面積為:
S=
1
2
×t×7
即S=
7
2
t(0<t≤8),

②當P在AB上運動時:
∵A(8,0),B(8,10),C(0,4),D(4,7),精英家教網(wǎng)
△ODC的面積為:
S1=
1
2
×4×4=8,
△OPA的面積是:
S2=
1
2
×8×(t-8)=4t-32,
△DBP的面積是:
S3=
1
2
×{10-(t-8)}×(8-4)=36-2t,
四邊形OABC的面積是:
S4=
1
2
×(4+10)×8=56,
∴△ODP的面積是:
S=S4-S1-S2-S3=56-8-(4t-32)-(36-2t)=-2t+44,
即S=-2t+44(8<t≤18),
∴S=
7
2
t(0<t≤8)
-2t+44(8<t≤18)

精英家教網(wǎng)
(3)由(2)可知:
a:
7
2
t=
3
8
×56,
解得t=6秒,
b:-2t+44=
3
8
×56,
解得t=11.5秒,
∴t=6秒或t=11.5秒.
點評:這題的關鍵是考查已知兩點坐標用設出解析式y(tǒng)=kx+b求出一次函數(shù)的解析式,利用面積公式求出關系式,利用分類討論思想求出t值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•河北區(qū)一模)如圖,在梯形ABCO中,A(0,2),B(4,2),O為原點,點C為x軸正半軸上一動點,M為線段BC中點.
(Ⅰ)設C(x,0),S△AOM=y,求y與x的關系式,并寫出x的取值范圍;
(Ⅱ)如果以線段AO為直徑的⊙D與以BC為直徑的⊙M外切,求x的值.
(Ⅲ)連BO,交線段AM于N,如果以A,N,B為頂點的三角形與△OMC相似,請寫出直線CN的解析式(不要過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在梯形ABCO中,OC∥AB,以O為原點建立平面直角坐標系,A、B、C三點的坐標分別是A(8,0),B(8,10),C(0,4).點D(4,7)為線段BC的中點,動點P從O點出發(fā),以每秒1個單位的速度,沿折線OAB的路線運動,運動時間為t秒.
(1)求直線BC的解析式;
(2)設△OPD的面積為s,求出s與t的函數(shù)關系式,并指出自變量t的取值范圍;
(3)當t為何值時,△OPD的面積是梯形OABC的面積的數(shù)學公式?

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年浙江省金華四中九年級畢業(yè)生學業(yè)考試模擬數(shù)學卷(帶解析) 題型:解答題

如圖1,在等腰梯形ABCO中,ABCO,EAO的中點,過點EEFOCBCF,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標系中,使點O與原點重合,OCx軸正半軸上,點A,B在第一象限內.
(1)求點E的坐標及線段AB的長;
(2)點P為線段EF上的一個動點,過點PPMEFOC于點M,過MMNAO交折線ABC于點N,連結PN,設PE=x.△PMN的面積為S.
①求S關于x的函數(shù)關系式;
②△PMN的面積是否存在最大值,若不存在,請說明理由.若存在,求出面積的最大值;

(3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.現(xiàn)在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個單位的速度沿OC方向向右移動,直到點D與點C重合時停止(如圖2).設運動時間為t秒,運動后的直角梯形為EDGH′(如圖3);試探究:在運動過程中,等腰梯ABCO與直角梯形EDGH′重合部分的面積y與時間t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年天津市河北區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

如圖,在梯形ABCO中,A(0,2),B(4,2),O為原點,點C為x軸正半軸上一動點,M為線段BC中點.
(Ⅰ)設C(x,0),S△AOM=y,求y與x的關系式,并寫出x的取值范圍;
(Ⅱ)如果以線段AO為直徑的⊙D與以BC為直徑的⊙M外切,求x的值.
(Ⅲ)連BO,交線段AM于N,如果以A,N,B為頂點的三角形與△OMC相似,請寫出直線CN的解析式(不要過程).

查看答案和解析>>

同步練習冊答案