【題目】如圖,在銳角△ABC中,AB=4,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動(dòng)點(diǎn),則BM+MN的最小值是__________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點(diǎn)M,延長ED到H使DH=BM,連接AM,AH,則以下四個(gè)結(jié)論:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形;④S四邊形ABCD= AM2.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 的圖象與x軸交于A(﹣1.0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3),頂點(diǎn)為D.
(1)求此拋物線的解析式.
(2)求此拋物線頂點(diǎn)D的坐標(biāo)和對稱軸.
(3)探究對稱軸上是否存在一點(diǎn)P,使得以點(diǎn)P、D、A為頂點(diǎn)的三角形是等腰三角形?若存在,請求出所有符合條件的P點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線AB∥CD.
(1)如圖1,直接寫出∠BME、∠E、∠END的數(shù)量關(guān)系為 ;
(2)如圖2,∠BME與∠CNE的角平分線所在的直線相交于點(diǎn)P,試探究∠P與∠E之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,∠ABM=∠MBE,∠CDN=∠NDE,直線MB、ND交于點(diǎn)F,則 = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小華是同班同學(xué),也是鄰居,某日早晨,小明7:40先出發(fā)去學(xué)校,走了一段后,在途中停下吃了早餐,后來發(fā)現(xiàn)上學(xué)時(shí)間快到了,就跑步到學(xué)校;小華離家后直接乘公共汽車到了學(xué)校.如圖是他們從家到學(xué)校已走的路程s(米)和所用時(shí)間t(分鐘)的關(guān)系圖.則下列說法中正確的是( ).①小明家和學(xué)校距離1200米;②小華乘坐公共汽車的速度是240米/分;③小華乘坐公共汽車后7:50與小明相遇;④小華的出發(fā)時(shí)間不變,當(dāng)小華由乘公共汽車變?yōu)榕懿剑遗懿降乃俣仁?/span>100米/分時(shí),他們可以同時(shí)到達(dá)學(xué)校.
A. ①③④B. ①②③C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們提供如下定理:在直角三角形中,30°的銳角所對的直角邊是斜邊的一半,
如圖(1),Rt△ABC中,∠C=90°,∠A=30°,則BC=AB.
請利用以上定理及有關(guān)知識(shí),解決下列問題:
如圖(2),邊長為6的等邊三角形ABC中,點(diǎn)D從A出發(fā),沿射線AB方向有A向B運(yùn)動(dòng)點(diǎn)F同時(shí)從C出發(fā),以相同的速度沿著射線BC方向運(yùn)動(dòng),過點(diǎn)D作DE⊥AC,DF交射線AC于點(diǎn)G.
(1)當(dāng)點(diǎn)D運(yùn)動(dòng)到AB的中點(diǎn)時(shí),直接寫出AE的長;
(2)當(dāng)DF⊥AB時(shí),求AD的長及△BDF的面積;
(3)小明通過測量發(fā)現(xiàn),當(dāng)點(diǎn)D在線段AB上時(shí),EG的長始終等于AC的一半,他想當(dāng)點(diǎn)D運(yùn)動(dòng)到圖3的情況時(shí),EG的長始終等于AC的一半嗎?若改變,說明理由;若不變,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明
如圖,點(diǎn)E在直線DF上,點(diǎn)B在直線AC上,若∠AGB=∠EHF,∠C=∠D.
求證:∠A=∠F.
證明:∵∠AGB=∠EHF
∠AGB=___________(對頂角相等)
∴∠EHF=∠DGF
∴DB∥EC(____________________________________)
∴∠_________=∠DBA(________________________________)
又∵∠C=∠D
∴∠DBA=∠D
∴DF∥_______(__________________________________)
∴∠A=∠F(__________________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘船以每小時(shí)30海里的速度向北偏東75°方向航行,在點(diǎn)A處測得碼頭C在船的東北方向,航行40分鐘后到達(dá)B處,這時(shí)碼頭C恰好在船的正北方向,在船不改變航向的情況下,求出船在航行過程中與碼頭C的最近距離.(結(jié)果精確到0.1海里,參考數(shù)據(jù) ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過四邊形的一個(gè)頂點(diǎn)可以畫一條對角線,且把四邊形分成兩個(gè)三角形;過五邊形的一個(gè)頂點(diǎn)可以畫兩條對角線,且把五邊形分成三個(gè)三角形;......猜想:過n邊形的一個(gè)頂點(diǎn)可以畫_________條對角線,且把n邊形分成 _________個(gè)三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com