【題目】如圖,需在一面墻上繪制幾個相同的拋物線型圖案.按照圖中的直角坐標(biāo)系,最左邊的拋物線可以用y=ax2+bx(a≠0)表示.已知拋物線上B,C兩點到地面的距離均為 m,到墻邊OA的距離分別為 m, m.
(1)求該拋物線的函數(shù)關(guān)系式,并求圖案最高點到地面的距離;
(2)若該墻的長度為10m,則最多可以連續(xù)繪制幾個這樣的拋物線型圖案?
【答案】
(1)解:根據(jù)題意得:B( , ),C( , ),
把B,C代入y=ax2+bx得 ,
解得: ,
∴拋物線的函數(shù)關(guān)系式為y=﹣x2+2x;
∴圖案最高點到地面的距離= =1
(2)解:令y=0,即﹣x2+2x=0,
∴x1=0,x2=2,
∴10÷2=5,
∴最多可以連續(xù)繪制5個這樣的拋物線型圖案
【解析】(1)根據(jù)題意求得B( , ),C( , ),解方程組求得拋物線的函數(shù)關(guān)系式為y=﹣x2+2x;根據(jù)拋物線的頂點坐標(biāo)公式得到結(jié)果;(2)令y=0,即﹣x2+2x=0,解方程得到x1=0,x2=2,即可得到結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線m⊥n.在平面直角坐標(biāo)系xOy中,x軸∥m,y軸∥n.如果以O(shè)1為原點,點A 的坐標(biāo)為(1,1).將點O1平移2 個單位長度到點O2 , 點A的位置不變,如果以O(shè)2為原點,那么點A的坐標(biāo)可能是( )
A.(3,﹣1)
B.(1,﹣3)
C.(﹣2,﹣1)
D.(2 +1,2 +1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請直接寫出因式分解的最后結(jié)果_________ .
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各圖是在同一直角坐標(biāo)系內(nèi),二次函數(shù)y=ax2+(a+c)x+c與一次函數(shù)y=ax+c的大致圖象,有且只有一個是正確的,正確的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2 -(m+1)x+2(m-1)=0,
(1)求證:無論m取何值時,方程總有實數(shù)根;
(2)若等腰三角形腰長為4,另兩邊恰好是此方程的根,求此三角形的另外兩條邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有客房50間,當(dāng)每間客房每天的定價為220元時,客房會全部住滿;當(dāng)每間客房每天的定價增加10元時,就會有一間客房空閑,設(shè)每間客房每天的定價增加x元時,客房入住數(shù)為y間.
(1)求y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)如果每間客房入住后每天的各種支出為40元,不考慮其他因素,則該賓館每間客房每天的定價為多少時利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,且拋物線經(jīng)過A(﹣1,0),C(0,﹣5)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)設(shè)點P為拋物線上的一個動點,連接PB、PC,若△BPC是以BC為直角邊的直角三角形,求此時點P的坐標(biāo);
(3)在拋物線上BC段有另一個動點Q,以點Q為圓心作⊙Q,使得⊙Q與直線BC相切,在運動的過程中是否存在一個最大⊙Q?若存在,請直接寫出最大⊙Q的半徑;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知等腰三角形的一邊長等于8cm,一邊長等于9cm,求它的周長;
(2)等腰三角形的一邊長等于6cm,周長等于28cm,求其他兩邊的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com