(2013•廣州)如圖,在東西方向的海岸線MN上有A、B兩艘船,均收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東58°方向,船P在船B的北偏西35°方向,AP的距離為30海里.
(1)求船P到海岸線MN的距離(精確到0.1海里);
(2)若船A、船B分別以20海里/小時、15海里/小時的速度同時出發(fā),勻速直線前往救援,試通過計算判斷哪艘船先到達船P處.
分析:(1)過點P作PE⊥AB于點E,在Rt△APE中解出PE即可;
(2)在Rt△BPF中,求出BP,分別計算出兩艘船需要的時間,即可作出判斷.
解答:解:(1)過點P作PE⊥AB于點E,

由題意得,∠PAE=32°,AP=30海里,
在Rt△APE中,PE=APsin∠PAE=APsin32°≈15.9海里;

(2)在Rt△PBE中,PE=15.9海里,∠PBE=55°,
則BP=
PE
sin∠PBE
≈19.4,
A船需要的時間為:
30
20
=1.5小時,B船需要的時間為:
19.4
15
=1.3小時,
故B船先到達.
點評:本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是理解仰角的定義,能利用三角函數(shù)值計算有關(guān)線段,難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)如圖所示的幾何體的主視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)如圖所示,四邊形ABCD是梯形,AD∥BC,CA是∠BCD的平分線,且AB⊥AC,AB=4,AD=6,則tanB=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)如圖,Rt△ABC的斜邊AB=16,Rt△ABC繞點O順時針旋轉(zhuǎn)后得到Rt△A′B′C′,則Rt△A′B′C′的斜邊A′B′上的中線C′D的長度為
8
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,正方形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標(biāo)為(2,2),反比例函數(shù)y=
kx
(x>0,k≠0)的圖象經(jīng)過線段BC的中點D.
(1)求k的值;
(2)若點P(x,y)在該反比例函數(shù)的圖象上運動(不與點D重合),過點P作PR⊥y軸于點R,作PQ⊥BC所在直線于點Q,記四邊形CQPR的面積為S,求S關(guān)于x的解析式并寫出x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案