精英家教網 > 初中數學 > 題目詳情
如圖,已知AB是⊙O的直徑,CD是弦,且CD⊥AB,BC=6,AC=8,求sin∠ABD的值.

【答案】分析:首先根據垂徑定理得出∠ABD=∠ABC,然后由直徑所對的圓周角是直角,得出∠ACB=90°,根據勾股定理算出斜邊AB的長,再根據正弦的定義求出sin∠ABC的值,從而得出sin∠ABD的值.
解答:解:由條件可知:弧AC=弧AD,則∠ABD=∠ABC,
所以sin∠ABD=sin∠ABC=;
AB為直徑,BC=6,AC=8,可得AB=10,
∴sin∠ABD=
點評:本題主要考查了垂徑定理及銳角三角函數的定義.
垂直于弦的直徑平分這條弦,并且平分弦所對的兩條。
在直角三角形中,銳角的正弦為對邊比斜邊.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結論不成立的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習冊答案