如圖,在直角坐標(biāo)系中,⊙A的半徑為4,A的坐標(biāo)為(2,0),⊙A與x軸交于E、F兩點(diǎn),與y軸交于C、D兩點(diǎn),過(guò)C點(diǎn)作⊙A的切線BC交x軸于B.
(1)求直線BC的解析式;
(2)若一拋物線與x軸的交點(diǎn)恰為⊙A與x軸的兩個(gè)交點(diǎn),且拋物線的頂點(diǎn)在直線上y=
3
3
x+2
3
上,求此拋物線的解析式;
(3)試判斷點(diǎn)C是否在拋物線上,并說(shuō)明理由.
(1)連接AC,因?yàn)锽C為⊙A的切線,
則AC=4,OA=2,∠ACB=90°
又因?yàn)椤螦OC=90°,
所以∠OCA=30°,∠A=60°,∠B=30度.
所以O(shè)C=OA•tan60°=2
3
,OB=OC•cot30°=2
3
×
3
=6,
所以B(-6,0),C(0,2
3
).
設(shè)直線BC的解析式為y=kx+2
3
,
則0=-6k+2
3

解得k=
3
3
,
所以y=
3
3
x+2
3


(2)因?yàn)锳E=4,OA=2,
所以O(shè)E=2,OF=6,
則E(-2,0),F(xiàn)(6,0).
設(shè)拋物線的解析式是y=(9x+2)(x-6),
則y=a(x-2)2-16a,
所以頂點(diǎn)坐標(biāo)是(2,-16a).
因?yàn)椋?,-16a)在直線y=
3
3
x+2
3
上,
所以-16a=
2
3
3
+2
3
,a=-
3
6

所以y=-
3
6
x2+
2
3
3
x+2
3


(3)當(dāng)x=0時(shí),y=2
3
.故點(diǎn)C在拋物線上.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

二次函數(shù)y=-x2+kx+3的圖象與x軸交于點(diǎn)(3,0)
(1)求函數(shù)的解析式;
(2)畫(huà)出這個(gè)函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長(zhǎng)BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系.y軸是拋物線的對(duì)稱軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設(shè)雙行道,現(xiàn)有一輛貨運(yùn)卡車高4.2m,寬2.4米,這輛貨運(yùn)卡車能否通過(guò)該隧道?通過(guò)計(jì)算說(shuō)明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=
1
4
x2+1(如圖所示).
(1)填空:拋物線的頂點(diǎn)坐標(biāo)是(______,______),對(duì)稱軸是______;
(2)已知y軸上一點(diǎn)A(0,2),點(diǎn)P在拋物線上,過(guò)點(diǎn)P作PB⊥x軸,垂足為B.若△PAB是等邊三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,點(diǎn)M在直線AP上.在平面內(nèi)是否存在點(diǎn)N,使四邊形OAMN為菱形?若存在,直接寫(xiě)出所有滿足條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,二次函數(shù)y=
1
2
x2+
3
4
nx+2-m
的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A在點(diǎn)B的左邊,若
∠ACB=90°,
CO
AO
+
BO
CO
=1

(1)求點(diǎn)C的坐標(biāo)及這個(gè)二次函數(shù)的解析式.
(2)試設(shè)計(jì)兩種方案:作一條與y軸不重合、與△ABC的兩邊相交的直線,使截得的三角形與△ABC相似,并且面積是△AOC面積的四分之一.求所截得的三角形三個(gè)頂點(diǎn)的坐標(biāo)(說(shuō)明:不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線m的解析式為y=x2-4,與x軸交于A、C兩點(diǎn),B是拋物線m上的動(dòng)點(diǎn)(B不與A、C重合),且B在x軸的下方,拋物線n與拋物線m關(guān)于x軸對(duì)稱,以AC為對(duì)角線的平行四邊形ABCD的第四個(gè)頂點(diǎn)為D.
(1)求證:點(diǎn)D一定在拋物線n上.
(2)平行四邊形ABCD能否為矩形?若能為矩形,求出這些矩形公共部分的面積(若只有一個(gè)矩形符合條件,則求此矩形的面積);若不能為矩形,請(qǐng)說(shuō)明理由.
(3)若(2)中過(guò)A、B、C、D的圓交y軸于E、F,而P是弧CF上一動(dòng)點(diǎn)(不包括C、F兩點(diǎn)),連接AP交y軸于N,連接EP交x軸于M.當(dāng)P在運(yùn)動(dòng)時(shí),四邊形AEMN的面積是否改變?若不變,則求其面積;若變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我市某工藝廠為配合2010年上海世博會(huì),設(shè)計(jì)了一款成本為20元/件的工藝品投放市場(chǎng)進(jìn)行試銷.該工藝品每天試銷情況經(jīng)過(guò)調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系______;
(2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)W最大?(利潤(rùn)=銷售總價(jià)-成本總價(jià)).
(3)當(dāng)?shù)匚飪r(jià)部門(mén)規(guī)定,該工藝品銷售單價(jià)最高不能超過(guò)45元/件,那么工藝廠試銷該工藝品每天獲得的利潤(rùn)最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2-x-
3
2
與x軸正半軸交于點(diǎn)A(3,0),以O(shè)A為邊在x軸上方作正方形OABC,延長(zhǎng)CB交拋物線于點(diǎn)D,再以BD為邊向上作正方形BDEF.
(1)求a的值;
(2)求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示是二次函數(shù)y=-
1
2
x2+2的圖象在x軸上方的一部分,對(duì)于這段圖象與x軸所圍成的陰影部分的面積,你認(rèn)為可能的值是( 。
A.4B.
16
3
C.2πD.8

查看答案和解析>>

同步練習(xí)冊(cè)答案