精英家教網 > 初中數學 > 題目詳情
(2007•泰安)如圖,在△ABC中,AB=AC,以AB為直徑的圓O交BC于點D,交AC于點E,過點D作DF⊥AC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若過A點且與BC平行的直線交BE的延長線于G點,連接CG.當△ABC是等邊三角形時,求∠AGC的度數.

【答案】分析:(1)連接AD,OD,根據等腰三角形的性質與平行線的性質,可得DF⊥OD,故得到證明;
(2)根據題意,△ABC是等邊三角形,可得BG是AC的垂直平分線,再根據平行線的性質,可得△ACG是等邊三角形,故∠AGC=60°.
解答:(1)證明:連接AD,OD,
∵AB是⊙O的直徑,
∴AD⊥BC.(2分)
∵△ABC是等腰三角形,
∴BD=DC,
又∵AO=BO,
∴OD是△ABC的中位線,
∴OD∥AC.
∵DF⊥AC,(4分)
∴DF⊥OD,
∴DF是⊙O的切線.(5分)

(2)解:∵AB是⊙O的直徑,
∴BG⊥AC.
∵△ABC是等邊三角形,
∴BG是AC的垂直平分線,
∴GA=GC.(7分)
又∵AG∥BC,∠ACB=60°,
∴∠CAG=∠ACB=60°.
∴△ACG是等邊三角形.
∴∠AGC=60°.(9分)
點評:本題考查常見的幾何題型,包括切線的判定,及角度的大小的求法,要求學生掌握常見的解題方法,并能結合圖形選擇簡單的方法解題.
練習冊系列答案
相關習題

科目:初中數學 來源:2007年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2007•泰安)如圖,在△OAB中,∠B=90°,∠BOA=30°,OA=4,將△OAB繞點O按逆時針方向旋轉至△OA′B′,C點的坐標為(0,4).
(1)求A′點的坐標;
(2)求過C,A′,A三點的拋物線y=ax2+bx+c的解析式;
(3)在(2)中的拋物線上是否存在點P,使以O,A,P為頂點的三角形是等腰直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年山東省泰安市初中學業(yè)考試數學樣卷(解析版) 題型:解答題

(2007•泰安)如圖,在△OAB中,∠B=90°,∠BOA=30°,OA=4,將△OAB繞點O按逆時針方向旋轉至△OA′B′,C點的坐標為(0,4).
(1)求A′點的坐標;
(2)求過C,A′,A三點的拋物線y=ax2+bx+c的解析式;
(3)在(2)中的拋物線上是否存在點P,使以O,A,P為頂點的三角形是等腰直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年山東省泰安市中考數學試卷(課標卷)(解析版) 題型:解答題

(2007•泰安)如圖,在△OAB中,∠B=90°,∠BOA=30°,OA=4,將△OAB繞點O按逆時針方向旋轉至△OA′B′,C點的坐標為(0,4).
(1)求A′點的坐標;
(2)求過C,A′,A三點的拋物線y=ax2+bx+c的解析式;
(3)在(2)中的拋物線上是否存在點P,使以O,A,P為頂點的三角形是等腰直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年山東省泰安市中考數學試卷(大綱卷)(解析版) 題型:解答題

(2007•泰安)如圖,在△OAB中,∠B=90°,∠BOA=30°,OA=4,將△OAB繞點O按逆時針方向旋轉至△OA′B′,C點的坐標為(0,4).
(1)求A′點的坐標;
(2)求過C,A′,A三點的拋物線y=ax2+bx+c的解析式;
(3)在(2)中的拋物線上是否存在點P,使以O,A,P為頂點的三角形是等腰直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年山東省泰安市中考數學試卷(大綱卷)(解析版) 題型:選擇題

(2007•泰安)如圖,在正方形ABCD中,E是BC的中點,F是CD上一點,且CF=CD,下列結論:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正確的個數為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案