如圖,四邊形OABC是菱形,點C在x軸上,AB交y軸于點H,AC交y軸于點M.已知點A(-3,4).
(1)求AO的長;
(2)求直線AC的解析式和點M的坐標;
(3)點P從點A出發(fā),以每秒2個單位的速度沿折線A-B-C運動,到達點C終止.設(shè)點P的運動時間為t秒,△PMB的面積為S.
①求S與t的函數(shù)關(guān)系式;
②求S的最大值.
精英家教網(wǎng)
分析:(1)根據(jù)A的坐標求出AH、OH,根據(jù)勾股定理求出即可;
(2)根據(jù)菱形性質(zhì)求出B、C的坐標,設(shè)直線AC的解析式是y=kx+b,把A(-3,4),C(5,0)代入得到方程組,求出即可;
(3)①過M作MN⊥BC于N,根據(jù)角平分線性質(zhì)求出MN,P在AB上,根據(jù)三角形面積公式求出即可;P在BC上,根據(jù)三角形面積公式求出即可;②求出P在AB的最大值和P在BC上的最大值比較即可得到答案.
解答:(1)解:∵A(-3,4),
∴AH=3,OH=4,
由勾股定理得:AO=
AH2+OH2
=5,
答:OA的長是5.

(2)解:∵菱形OABC,
∴OA=OC=BC=AB=5,
5-3=2,
∴B(2,4),C(5,0),
設(shè)直線AC的解析式是y=kx+b,
把A(-3,4),C(5,0)代入得:
4=-3k+b
0=5k+b

解得:
k=-
1
2
b=
5
2
,
∴直線AC的解析式為y=-
1
2
x+
5
2
,
當x=0時,y=2.5
∴M(0,2.5),
答:直線AC的解析式是y=-
1
2
x+
5
2
,點M的坐標是(0,2.5).

(3)①解:過M作MN⊥BC于N,精英家教網(wǎng)
∵菱形OABC,
∴∠BAC=∠OCA,
∵MO⊥CO,MN⊥BC,
∴OM=MN,
當0≤t<2.5時,P在AB上,MH=4-2.5=
3
2

S=
1
2
×BP×MH=
1
2
×(5-2t)×
3
2
=-
3
2
t+
15
4
,
S=-
3
2
t+
15
4

當t=2.5時,P與B重合,△PMB不存在;
當2.5<t≤5時,P在BC上,S=
1
2
×PB×MN=
1
2
×(2t-5)×
5
2
=
5
2
t-
25
4
,
S=
5
2
t-
25
4

答:S與t的函數(shù)關(guān)系式是S=-
3
2
t+
15
4
(0≤t<2.5)或S=
5
2
t-
25
4
(2.5<t≤5).

②解:當P在AB上時,高MH一定,只有BP取最大值即可,即P與A重合,S最大是
1
2
×5×
3
2
=
15
4
,
同理在BC上時,P與C重合時,S最大是
1
2
×5×
5
2
=
25
4
,
∴S的最大值是
25
4
,
答:S的最大值是
25
4
點評:本題主要考查對勾股定理,三角形的面積,菱形的性質(zhì),角平分線性質(zhì),解二元一次方程組,用待定系數(shù)法求一次函數(shù)的解析式等知識點的理解和掌握,綜合運用這些性質(zhì)進行計算是解此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形OABC為直角梯形,BC∥OA,∠O=90°,OA=4,BC=3,OC=4.點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運精英家教網(wǎng)動.過點N作NP⊥OA于點P,連接AC交NP于Q,連接MQ. 
(1)點
 
(填M或N)能到達終點;
(2)求△AQM的面積S與運動時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形OABC是一張放在平面直角坐標系中的正方形紙片.點O與坐標原點重合,點A在x軸上,點C在y軸上,OC=4,點E為BC的中點,點N的坐標為(3,0),過點N且平行于y軸的直線MN與EB交于點M.現(xiàn)將紙片折疊,使頂點C落精英家教網(wǎng)在MN上,并與MN上的點G重合,折痕為EF,點F為折痕與y軸的交點.
(1)求點G的坐標;
(2)求折痕EF所在直線的解析式;
(3)設(shè)點P為直線EF上的點,是否存在這樣的點P,使得以P,F(xiàn),G為頂點的三角形為等腰三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形OABC為正方形,點A在x軸上,點C在y軸上,點B(8,8),點P在邊OC上,點M在邊AB上.把四邊形OAMP沿PM對折,PM為折痕,使點O落在BC邊上的點Q處.動點E從點O出發(fā),沿OA邊以每秒1個單位長度的速度向終點A運動,運動時間為t,同時動點F從點O出發(fā),沿OC邊以相同的速度向終點C運動,當點E到達點A時,E、F同時停止運動.
(1)若點Q為線段BC邊中點,直接寫出點P、點M的坐標;
(2)在(1)的條件下,設(shè)△OEF與四邊形OAMP重疊面積為S,求S與t的函數(shù)關(guān)系式;
(3)在(1)的條件下,在正方形OABC邊上,是否存在點H,使△PMH為等腰三角形,若存在,求出點H的坐標,若不存在,請說明理由;
(4)若點Q為線段BC上任一點(不與點B、C重合),△BNQ的周長是否發(fā)生變化,若不發(fā)生變化,求出其值,若發(fā)生變化,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•呼倫貝爾)如圖,四邊形OABC是邊長為2的正方形,反比例函數(shù)y=
k
x
的圖象過點B,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

附加題:如圖,四邊形OABC為直角梯形,已知AB∥OC,BC⊥OC,A點坐標為(3,4),AB=6,若動點P沿著O→A→B→C的方向運動(不包括O點和C點),P點運動路程為S,下列語句中正確的個數(shù)精英家教網(wǎng)是( 。
(1)直線OA的函數(shù)解析式為y=
4
3
x
;
(2)梯形OABC的周長為24;
(3)若點P在線段AB上時,P點的坐標為(S-5,4)
(4)若點P在線段BC上時,P點的坐標為(9,15-S)
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習冊答案