(2012•濰坊)如圖所示,AB=DB,∠ABD=∠CBE,請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件
∠BDE=∠BAC
∠BDE=∠BAC
,使△ABC≌△DBE.(只需添加一個(gè)即可)
分析:根據(jù)∠ABD=∠CBE可以證明得到∠ABC=∠DBE,然后根據(jù)利用的證明方法,“角邊角”“邊角邊”“角角邊”分別寫出第三個(gè)條件即可.
解答:解:∵∠ABD=∠CBE,
∴∠ABD+∠ABE=∠CBE+∠ABE,
即∠ABC=∠DBE,
∵AB=DB,
∴①用“角邊角”,需添加∠BDE=∠BAC,
②用“邊角邊”,需添加BE=BC,
③用“角角邊”,需添加∠ACB=∠DEB.
故答案為:∠BDE=∠BAC或BE=BC或∠ACB=∠DEB.(寫出一個(gè)即可)
點(diǎn)評(píng):本題考查了全等三角形的判定,根據(jù)已知條件有一邊與一角,根據(jù)不同的證明方法可以選擇添加不同的條件,需要注意,不能使添加的條件符合“邊邊角”,這也是本題容易出的地方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濰坊)如圖空心圓柱體的主視圖的畫(huà)法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濰坊)如圖是某月的日歷表,在此日歷表上可以用一個(gè)矩形圈出3×3個(gè)位置相鄰的9個(gè)數(shù)(如6,7,8,13,14,15,20,21,22).若圈出的9個(gè)數(shù)中,最大數(shù)與最小數(shù)的積為192,則這9個(gè)數(shù)的和為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濰坊)如圖,已知平行四邊形ABCD,過(guò)A點(diǎn)作AM⊥BC于M,交BD于E,過(guò)C點(diǎn)作CN⊥AD于N,交BD于F,連接AF、CE.
(1)求證:四邊形AECF為平行四邊形;
(2)當(dāng)AECF為菱形,M點(diǎn)為BC的中點(diǎn)時(shí),求AB:AE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濰坊)如圖,已知拋物線與坐標(biāo)軸分別交于A(-2,0),B(2,0),C(0,-1)三點(diǎn),過(guò)坐標(biāo)原點(diǎn)O的直線y=kx與拋物線交于M、N兩點(diǎn).分別過(guò)點(diǎn)C、D(0,-2)作平行于x軸的直線l1、l2
(1)求拋物線對(duì)應(yīng)二次函數(shù)的解析式;
(2)求證以O(shè)N為直徑的圓與直線l1相切;
(3)求線段MN的長(zhǎng)(用k表示),并證明M、N兩點(diǎn)到直線l2的距離之和等于線
段MN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案