當(dāng)x為何值時,的值小2。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,菱形ABCD的邊長為6cm,∠DAB=60°,點M是邊AD上一點,DM=2cm,點E、F分別從A、C同時出發(fā),以1cm/s的速度分別沿邊AB、CB向點B運動,EM、CD的延長線相交于G,GF交AD于O.設(shè)運動時間為x(s),△CGF的面積為y(cm2).精英家教網(wǎng)
(1)當(dāng)x為何值時,GD的長度是2cm?
(2)求y與x之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻,使得線段GF把菱形ABCD分成的上、下兩部分的面積之比為1:5?若存在,求出此時x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,有兩個形狀相同但大小不同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點,如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點p從△EFG的頂點G出發(fā),以1cm/s的速度在直角邊GF上向點F運動,當(dāng)點P到達(dá)點F時,點P停止運動,△EFG也隨之停止平移,設(shè)運動時間為x(s),F(xiàn)G的延長線交AC于H,(不考慮點P與G、F重合的情況)
(1)當(dāng)x為何值時,OP∥AC?
(2)你能不能用含x的式子來表示四邊形OAHP面積呢?若能,請表示;若不能,請說理由.
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,AB=AC=13cm,BC=10cm,AD⊥BC,垂足為點D.點P,Q分別從B,C兩點同時出發(fā),其中點P從點B開始沿BC邊向點C運動,速度為1cm/s,點Q從點C開始沿CA邊向點A運動,速度為2cm/s,設(shè)它們運動的時間為x(s).
(1)當(dāng)x為何值時,將△PCQ沿直線PQ翻折180°,使C點落到C'點,得到的四邊形CQC'P是菱形?
(2)設(shè)△PQD的面積為y(cm2),當(dāng)0<x<6.5時,求y與x的函數(shù)關(guān)系式.
(3)當(dāng)0<x<5時,是否存在x,使得△PDM與△MDQ(M為PQ與AD的交點)的面積比為3:5,若存在,求出x的值;若不存在,請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第6章《二次函數(shù)》中考題集(41):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,菱形ABCD的邊長為6cm,∠DAB=60°,點M是邊AD上一點,DM=2cm,點E、F分別從A、C同時出發(fā),以1cm/s的速度分別沿邊AB、CB向點B運動,EM、CD的延長線相交于G,GF交AD于O.設(shè)運動時間為x(s),△CGF的面積為y(cm2).
(1)當(dāng)x為何值時,GD的長度是2cm?
(2)求y與x之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻,使得線段GF把菱形ABCD分成的上、下兩部分的面積之比為1:5?若存在,求出此時x的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案