溫州享有“中國筆都”之稱,其產(chǎn)品暢銷全球,某制筆企業(yè)欲將n件產(chǎn)品運(yùn)往A,B,C三地銷售,要求運(yùn)往C地的件數(shù)是運(yùn)往A地件數(shù)的2倍,各地的運(yùn)費(fèi)如圖所示.設(shè)安排x件產(chǎn)品運(yùn)往A地.
(1)當(dāng)n=200時(shí),
①根據(jù)信息填表:
 
A地
B地
C地
合計(jì)
產(chǎn)品件數(shù)(件)
x
 
2x
200
運(yùn)費(fèi)(元)
30x
  
 
 
 
②若運(yùn)往B地的件數(shù)不多于運(yùn)往C地的件數(shù),總運(yùn)費(fèi)不超過4000元,則有哪幾種運(yùn)輸方案?
(2)若總運(yùn)費(fèi)為5800元,求n的最小值.
(1)填表見解析;有三種方案,分別是:方案一:A地40件,B地80件,C地80件;方案二:A地41件,B地77件,C地82件;方案三:A地42件,B地74件,C地84件;(2)221.

試題分析:(1)①根據(jù)n=200求出運(yùn)往B第的件數(shù),再分別乘以單價(jià)即可求出運(yùn)往B地、C地的運(yùn)費(fèi);
②根據(jù)運(yùn)往B地的件數(shù)不多于運(yùn)往C地的件數(shù),總運(yùn)費(fèi)不超過4000元列出不等式組,然后求解得到x的取值范圍,再根據(jù)x是正整數(shù)確定出運(yùn)輸方案;
(2)根據(jù)總運(yùn)費(fèi)列出算式并用x表示出n,再根據(jù)n不小于運(yùn)往A、C兩地的件數(shù)求出x的取值范圍,然后根據(jù)一次函數(shù)的增減性求出n的最小值即可.
(1)①根據(jù)信息填表:
 ;
②由題意,得

解不等式①得,x≥40,
解不等式②得,x≤,
所以,40≤x≤
∵x為整數(shù),
∴x=40或41或42,
∴有三種方案,分別是:方案一:A地40件,B地80件,C地80件;
方案二:A地41件,B地77件,C地82件;
方案三:A地42件,B地74件,C地84件;
(2)由題意,得30x+8(n-3x)+50x=5800,
整理,得n=725-7x,
∵n-3x≥0,
∴725-7x-3x≥0,
解得x≤72.5,
又∵x≥0,
∴0≤x≤72.5且x為整數(shù),
∵n隨x的增大而減少,
∴當(dāng)x=72時(shí),n有最小值為725-7×72=221.
考點(diǎn): 1.一次函數(shù)的應(yīng)用;2.一元一次不等式組的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩車分別從A地將一批物品運(yùn)往B地,再返回A地,如圖表示兩車離A地的距離s(千米)隨時(shí)間t(小時(shí))變化的圖象,已知乙車到達(dá)B地后以30千米/小時(shí)的速度返回.請根據(jù)圖象中的數(shù)據(jù)回答:
(1)甲車出發(fā)多長時(shí)間后被乙車追上?
(2)甲車與乙車在距離A地多遠(yuǎn)處迎面相遇?
(3)甲車從B地返回的速度多大時(shí),才能比乙車先回到A地?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,已知,,點(diǎn)C(-2,m)在直線AB上,反比例函數(shù)的圖象經(jīng)過點(diǎn)C.
(1)求一次函數(shù)及反比例函數(shù)的解析式;
(2)結(jié)合圖象直接寫出:當(dāng)時(shí),不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在一次函數(shù)y=kx+2中,若y隨x的增大而增大,則它的圖象不經(jīng)過第____象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

直線y=x-2與y軸的交點(diǎn)坐標(biāo)是(  )
A.(2,0)B.(-2,0)
C.(0,2)D.(0,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了激發(fā)學(xué)生學(xué)習(xí)英語的興趣,某中學(xué)舉行了校園英文歌曲大賽,并設(shè)立了一、二、三等獎。學(xué)校計(jì)劃根據(jù)設(shè)獎情況共買50件獎品,其中購買二等獎獎品件數(shù)比一等獎獎品件數(shù)的2倍件數(shù)還少10件,購買三等獎獎品所花錢數(shù)不超過二等獎所花錢數(shù)的1.5倍,且三等獎獎品數(shù)不能少于前兩種獎品數(shù)之和.其中各種獎品的單價(jià)如下表所示,如果計(jì)劃一等獎獎品買x件,買50件獎品的總費(fèi)用是w元.

(1)用含有x的代數(shù)式表示:該校團(tuán)委購買二等獎獎品多少件,三等獎獎品多少件?并表示w與x的函數(shù)關(guān)系式;
(2)請問共有哪幾種方案?
(3)請你計(jì)算一下,學(xué)校應(yīng)如何購買這三種獎品,才能使所支出的總費(fèi)用最少,最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若一次函數(shù),當(dāng)的值減小1,的值就減小2,則當(dāng)的值增加2時(shí),的值(   )
A.增加4B.減小4C.增加2D.減小2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在同一直角坐標(biāo)系中,若正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=的圖象沒有公共點(diǎn),則( 。
A.k1+k2<0B.k1+k2>0C.k1k2<0D.k1k2>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線,相交于點(diǎn)軸的交點(diǎn)坐標(biāo)為,軸的交點(diǎn)坐標(biāo)為,結(jié)合圖象解答下列問題:(每小題4分,共8分)
(1)求直線表示的一次函數(shù)的表達(dá)式;
(2)當(dāng)為何值時(shí),,表示的兩個(gè)一次函數(shù)值都大于.

查看答案和解析>>

同步練習(xí)冊答案