如圖,中,,,.半徑為1的圓的圓心以1個(gè)單位/的速度由點(diǎn)沿方向在上移動(dòng),設(shè)移動(dòng)時(shí)間為(單位:).

(1)當(dāng)為何值時(shí),⊙相切;

(2)作于點(diǎn),如果⊙和線段交于點(diǎn),證明:當(dāng)時(shí),四邊形為平行四邊形.


 (1)解:當(dāng)⊙在移動(dòng)中與相切時(shí),設(shè)切點(diǎn)為,連,

.

.∴.

,,

.∴.

(2)證明:∵,∴.

當(dāng)時(shí),.

.∴.

.

,∴.∴,

.∴.

∴當(dāng)時(shí),四邊形為平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•無錫一模)(1)閱讀理解
先觀察和計(jì)算,并用“>”、“<”、“≥”、“≤”、“=”填空:4+9
2
4×9
,
4+4
=
=
2
4×4
,2+3
2
2×3
.請(qǐng)猜想:當(dāng)a>0,b>0,則a+b
2
ab

如∵(
6
-
5
)2>0
,展開(
6
)2+(
5
)2-2
6×5
>0
,∴6+5>2
6×5

請(qǐng)你給出猜想的一個(gè)相仿的說明過程.
(2)知識(shí)應(yīng)用
①如圖⊙O中,⊙O的半徑為5,點(diǎn)P為⊙O內(nèi)一個(gè)定點(diǎn),OP=2,過點(diǎn)P作兩條互相垂直的弦,即AC⊥BD,作ON⊥BD,OM⊥AC,垂足為P、N,求OM2+ON2的值.
②在上述基礎(chǔ)上,連接AB、BC、CD、DA,利用①中的結(jié)論,探求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(1)閱讀理解
先觀察和計(jì)算,并用“>”、“<”、“≥”、“≤”、“=”填空:4+9  2,
4+4  2,2+3    2。請(qǐng)猜想:當(dāng)       。
如∵展開∴6+5
請(qǐng)你給出猜想的一個(gè)相仿的說明過程。
(2)知識(shí)應(yīng)用
①如圖⊙O中,⊙O的半徑為5,點(diǎn)P為⊙O內(nèi)一個(gè)定點(diǎn),OP=2,過點(diǎn)P作兩條互相垂直的弦,即AC⊥BD, 作ON⊥BD,OM⊥AC,垂足為M、N,求的值。
②在上述基礎(chǔ)上,連接AB、BC、CD、DA,利用①中的結(jié)論,探求四邊形ABCD面積的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省無錫市新區(qū)九年級(jí)下學(xué)期期中考試數(shù)學(xué)卷(帶解析) 題型:解答題

(1)閱讀理解
先觀察和計(jì)算,并用“>”、“<”、“≥”、“≤”、“=”填空:4+9  2,
4+4  2,2+3    2。請(qǐng)猜想:當(dāng)       。
如∵展開∴6+5。
請(qǐng)你給出猜想的一個(gè)相仿的說明過程。
(2)知識(shí)應(yīng)用
①如圖⊙O中,⊙O的半徑為5,點(diǎn)P為⊙O內(nèi)一個(gè)定點(diǎn),OP=2,過點(diǎn)P作兩條互相垂直的弦,即AC⊥BD, 作ON⊥BD,OM⊥AC,垂足為M、N,求的值。
②在上述基礎(chǔ)上,連接AB、BC、CD、DA,利用①中的結(jié)論,探求四邊形ABCD面積的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省無錫市新區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(1)閱讀理解
先觀察和計(jì)算,并用“>”、“<”、“≥”、“≤”、“=”填空:4+9______2,
4+4______2,2+3______2.請(qǐng)猜想:當(dāng)a>0,b>0,則a+b______
如∵,展開,∴6+5
請(qǐng)你給出猜想的一個(gè)相仿的說明過程.
(2)知識(shí)應(yīng)用
①如圖⊙O中,⊙O的半徑為5,點(diǎn)P為⊙O內(nèi)一個(gè)定點(diǎn),OP=2,過點(diǎn)P作兩條互相垂直的弦,即AC⊥BD,作ON⊥BD,OM⊥AC,垂足為P、N,求OM2+ON2的值.
②在上述基礎(chǔ)上,連接AB、BC、CD、DA,利用①中的結(jié)論,探求四邊形ABCD面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案