我們常見的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡稱為“鍋線”,鍋口直徑為6dm,鍋深3dm,鍋蓋高1dm(鍋口直徑與鍋蓋直徑視為相同),建立直接坐標系如圖①所示,如果把鍋縱斷面的拋物線的記為C1,把鍋蓋縱斷面的拋物線記為C2
(1)求C1和C2的解析式;
(2)如圖②,過點B作直線BE:y=x﹣1交C1于點E(﹣2,﹣),連接OE、BC,在x軸上求一點P,使以點P、B、C為頂點的△PBC與△BOE相似,求出P點的坐標;
(3)如果(2)中的直線BE保持不變,拋物線C1或C2上是否存在一點Q,使得△EBQ的面積最大?若存在,求出Q的坐標和△EBQ面積的最大值;若不存在,請說明理由.

(1)y=x2﹣3(﹣3≤x≤3),y=﹣x2+1(﹣3≤x≤3)(2)P1,0)、P2(﹣,0)(3)(),

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•岳陽)我們常見的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡稱為“鍋線”,鍋口直徑為6dm,鍋深3dm,鍋蓋高1dm(鍋口直徑與鍋蓋直徑視為相同),建立直角坐標系如圖①所示,如果把鍋縱斷面的拋物線記為C1,把鍋蓋縱斷面的拋物線記為C2
(1)求C1和C2的解析式;
(2)如圖②,過點B作直線BE:y=
1
3
x-1交C1于點E(-2,-
5
3
),連接OE、BC,在x軸上求一點P,使以點P、B、C為頂點的△PBC與△BOE相似,求出P點的坐標;
(3)如果(2)中的直線BE保持不變,拋物線C1或C2上是否存在一點Q,使得△EBQ的面積最大?若存在,求出Q的坐標和△EBQ面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:中考真題 題型:解答題

我們常見的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡稱為“鍋線”,鍋口直徑為6dm,鍋深3dm,鍋蓋高1dm(鍋口直徑與鍋蓋直徑視為相同),建立直接坐標系如圖①所示,如果把鍋縱斷面的拋物線的記為C1,把鍋蓋縱斷面的拋物線記為C2。
(1)求C1和C2的解析式;
(2)如圖②,過點B作直線BE:y=x﹣1交C1于點E(﹣2,﹣),連接OE、BC,在x軸上求一點P,使以點P、B、C為頂點的△PBC與△BOE相似,求出P點的坐標;
(3)如果(2)中的直線BE保持不變,拋物線C1或C2上是否存在一點Q,使得△EBQ的面積最大?若存在,求出Q的坐標和△EBQ面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們常見的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡稱為“鍋線”,鍋口直徑為6dm,鍋深3dm,鍋蓋高1dm(鍋口直徑與鍋蓋直徑視為相同),建立直接坐標系如圖①所示,如果把鍋縱斷面的拋物線的記為C1,把鍋蓋縱斷面的拋物線記為C2

(1)求C1和C2的解析式;

(2)如圖②,過點B作直線BE:y=x﹣1交C1于點E(﹣2,﹣),連接OE、BC,在x軸上求一點P,使以點P、B、C為頂點的△PBC與△BOE相似,求出P點的坐標;

(3)如果(2)中的直線BE保持不變,拋物線C1或C2上是否存在一點Q,使得△EBQ的面積最大?若存在,求出Q的坐標和△EBQ面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年湖南省岳陽市中考數(shù)學試卷(解析版) 題型:解答題

我們常見的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡稱為“鍋線”,鍋口直徑為6dm,鍋深3dm,鍋蓋高1dm(鍋口直徑與鍋蓋直徑視為相同),建立直角坐標系如圖①所示,如果把鍋縱斷面的拋物線記為C1,把鍋蓋縱斷面的拋物線記為C2
(1)求C1和C2的解析式;
(2)如圖②,過點B作直線BE:y=x-1交C1于點E(-2,-),連接OE、BC,在x軸上求一點P,使以點P、B、C為頂點的△PBC與△BOE相似,求出P點的坐標;
(3)如果(2)中的直線BE保持不變,拋物線C1或C2上是否存在一點Q,使得△EBQ的面積最大?若存在,求出Q的坐標和△EBQ面積的最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案