在5,,,,π,中無(wú)理數(shù)的個(gè)數(shù)為( )
A.2
B.3
C.4
D.5
【答案】分析:無(wú)理數(shù)是指無(wú)限不循環(huán)小數(shù),包括:①含π的,②開(kāi)方開(kāi)不盡的根式,③一些有規(guī)律的數(shù),根據(jù)以上內(nèi)容判斷即可.
解答:解:無(wú)理數(shù)有,,π,共3個(gè),
故選B.
點(diǎn)評(píng):本題考查了對(duì)無(wú)理數(shù)定義的理解和運(yùn)用,注意:無(wú)理數(shù)是指無(wú)限不循環(huán)小數(shù),包括:①含π的,②開(kāi)方開(kāi)不盡的根式,③一些有規(guī)律的數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)P在AB上從A向B運(yùn)動(dòng),連接DP交AC于點(diǎn)Q.
(1)試證明:無(wú)論點(diǎn)P運(yùn)動(dòng)到AB上何處時(shí),都有△ADQ≌△ABQ;
(2)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)到什么位置時(shí),△ADQ的面積是正方形ABCD面積的
16

(3)若點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B,再繼續(xù)在BC上運(yùn)動(dòng)到點(diǎn)C,在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△ADQ恰為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在邊長(zhǎng)為6的正方形ABCD中,點(diǎn)P在AB上從A向B運(yùn)動(dòng),連接DP交AC于點(diǎn)Q,連接BQ.
(1)試證明:無(wú)論點(diǎn)P運(yùn)動(dòng)到AB上何處時(shí),都有△ADQ≌△ABQ;
(2)當(dāng)△ADQ的面積與正方形ABCD面積之比為1:6時(shí),求BQ的長(zhǎng)度,并直接寫(xiě)出此時(shí)點(diǎn)P在AB上的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

在一節(jié)數(shù)學(xué)實(shí)踐活動(dòng)課上,呂老師手拿著三個(gè)正方形硬紙板和幾個(gè)不同的圓形的盤(pán)子,他向同學(xué)們提出了這樣一個(gè)問(wèn)題:已知手中圓盤(pán)的直徑為13cm,手中的三個(gè)正方形硬紙板的邊長(zhǎng)均為5cm,若將三個(gè)正方形紙板不重疊地放在桌面上,能否用這個(gè)圓盤(pán)將其蓋?問(wèn)題提出后,同學(xué)們七嘴八舌,經(jīng)過(guò)討論,大家得出了一致性的結(jié)論是:本題實(shí)際上是求在不同情況下將三個(gè)正方形硬紙板無(wú)重疊地適當(dāng)放置,圓盤(pán)能蓋住時(shí)的最小直徑.然后將各種情形下的直徑值與13cm進(jìn)行比較,若小于或等于13cm就能蓋住,反之,則不能蓋。畢卫蠋煱淹瑢W(xué)們探索性畫(huà)出的四類圖形畫(huà)在黑板上,如下圖所示.
精英家教網(wǎng)
(1)通過(guò)計(jì)算,在①中圓盤(pán)剛好能蓋住正方形紙板的最小直徑應(yīng)為
 
cm.(填準(zhǔn)確數(shù))
(2)圖②能蓋住三個(gè)正方形硬紙板所需的圓盤(pán)最小直徑為
 
cm圖③能蓋住三個(gè)正方形硬紙板所需的圓盤(pán)最小直徑為
 
cm?(結(jié)果填準(zhǔn)確數(shù))
(3)按④中的放置,考慮到圖形的軸對(duì)稱性,當(dāng)圓心O落在GH邊上時(shí),此時(shí)圓盤(pán)的直徑最。(qǐng)你寫(xiě)出該種情況下求圓盤(pán)最小直徑的過(guò)程.(計(jì)算中可能用到的數(shù)據(jù),為了計(jì)算方便,本問(wèn)在計(jì)算過(guò)程中,根據(jù)實(shí)際情況最后的結(jié)果可對(duì)個(gè)別數(shù)據(jù)取整數(shù))
(4)由(1)(2)(3)的計(jì)算可知:A.該圓盤(pán)能蓋住三個(gè)正方形硬紙板,B.該圓盤(pán)不能蓋住三個(gè)正方形硬紙板.你的結(jié)論是
 
.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在扇形紙片AOB中,OA=10,∠AOB=36°,OB在桌面內(nèi)的直線l上.現(xiàn)將此扇形沿l按順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)過(guò)程中無(wú)滑動(dòng)),當(dāng)OA落在l上時(shí),停止旋轉(zhuǎn).則點(diǎn)O所經(jīng)過(guò)的路線長(zhǎng)為
12π
12π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

四巧板也叫”T字之謎”,是一種類似七巧板的智力玩具,其中有大小不同的直角梯形各一塊,等腰直角三角形一塊,凹五邊形一塊.圖1中所示的是一種特殊的四角板,它每塊的頂點(diǎn)都落在小正方形的格點(diǎn)上.
(1)請(qǐng)你通過(guò)平移、翻折、旋轉(zhuǎn)將這四塊拼塊在圖2中無(wú)縫隙、不重疊地拼成兩個(gè)形狀筆筒的特殊四邊形(長(zhǎng)方形、平行四邊形、梯形),要求:拼每個(gè)四邊形時(shí),四塊拼塊都用上且各自只能使用一次;
(2)這套特殊的四巧板中,四個(gè)拼塊的面積之和為
42
42

查看答案和解析>>

同步練習(xí)冊(cè)答案