精英家教網已知:如圖所示,在矩形ABCD中,EF⊥AC分別交DC、AB于點E、F,CF∥AE,CF平分∠ACB.
(1)求證:△AOE≌△CBF;
(2)試說明:如何把△AOE進行合適的變換得到△CBF?
分析:(1)根據(jù)已知求出∠EAC=∠BCF,根據(jù)矩形的性質推出AE=CF,根據(jù)AAS即可推出答案;
(2)根據(jù)中心對稱的性質作△AOE關于O的對稱圖形,再延CF翻折即可.
解答:(1)證明:∵CF∥AE,
∴∠EAC=∠ACF,
∵CF平分∠ACB,
∴∠BCF=∠ACF,
∴∠EAC=∠BCF,
∵矩形ABCD,
∴CD∥AB,∠B=90°,
∵AE∥CF,
∴四邊形AECF是平行四邊形,
∴AE=CF,
∵EF⊥AC,
∴∠EOA=90°=∠B,
在△AOE和△CBF中
∠EAC=∠BCF
∠EOA=∠B
AE=CF
,
∴△AOE≌△CBF.

(2)先把△AOE繞著點O旋轉180°后得到△COF,再把△COF沿直線CF翻折,即可得到△CBF.
點評:本題主要考查對矩形的性質,平行四邊形的性質和判定,全等三角形的判定,翻折變換,旋轉性質等知識點的理解和掌握,能綜合運用這些性質進行推理是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、已知:如圖所示,在矩形ABCD中,AF=BE.
求證:DE=CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、已知:如圖所示,在矩形ABCD中,分別沿AE、CF折疊△ADE、△CBF,使得點D、點B都重合于點O,且E、O、F三點共線,A、O、C三點共線.
求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖所示,在矩形ABCD中,E為DC上的一點,BF⊥AE于點F,且BF=BC,求證:AE=AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

34、根據(jù)要求擬編一道新題.
已知:如圖所示,在矩形ABCD所在平面有一點P,且PA=PD,請說明:PB=PC.
請你將上述條件中的“矩形ABCD”改為另一種四邊形,其余條件不變,使結論“PB=PC”仍然成立,再根據(jù)改編后的題目畫出圖形,并說明理由.

查看答案和解析>>

同步練習冊答案