如圖,在平面直角坐標系中,點A(10,0),∠OBA=90°,BC∥OA,OB=8,點E從點B出發(fā),以每秒1個單位長度沿BC向點C運動,點F從點O出發(fā),以每秒2個單位長度沿OB向點B運動.現(xiàn)點E、F同時出發(fā),當點F到達點B時,E、F兩點同時停止運動.
(1)求梯形OABC的高BG的長;
(2)連接E、F并延長交OA于點D,當E點運動到幾秒時,四邊形ABED是等腰梯形;
(3)動點E、F是否會同時在某個反比例函數(shù)的圖象上?如果會,請直接寫出這時動點E、F運動的時間t的值;如果不會,請說明理由.

【答案】分析:(1)先根據(jù)勾股定理求出AB的長度,再利用三角形的面積公式即可求出斜邊上的高BG;
(2)利用相似三角形對應邊成比例求出OD的長度,再根據(jù)等腰梯形的性質(zhì)DH的長就等于AG,列出方程求解即可;
(3)假設會在同一反比例函數(shù)圖象上,表示出點E、F的坐標則兩點的橫坐標與縱坐標的積等于定值,即相等,列出方程,如果方程有解,說明會在同一函數(shù)圖象上,求出方程的解就是運動的時間,如果方程無解說明不會在同一函數(shù)圖象上.
解答:解:(1)根據(jù)題意,AB===6,
∵2S△AOB=AB•OB=AO•BG,
∴BG===4.8;

(2)設當E點運動到x秒時,四邊形ABED是等腰梯形,則BE=x,OF=2x,
∵BC∥OA,
,即,
解得OD=,
過E作EH⊥OA于H,
∵四邊形ABED是等腰梯形,
∴DH=AG===3.6,
HG=BE=x,
∴DH=10--x-3.6=3.6,
解得x=

(3)會同時在某個反比例函數(shù)的圖象上.
根據(jù)題意,OG=AO-AG=10-3.6=6.4,
∴點E(6.4-t,4.8),
∵OF=2t,
∴2tcos∠AOB=2t×=t,
2tsin∠AOB=2t×=t,
∴點F的坐標為(t,t)
假設能在同一反比例函數(shù)圖象上,則
t=(6.4-t)×4.8,
整理得:2t2+5t-32=0,
△=25-4×2×(-32)=281>0,
∴方程有解,即E、F會同時在某一反比例函數(shù)圖象上,
此時,t=,
因此E、F會同時在某個反比例函數(shù)的圖象上,t=
點評:本題主要考查勾股定理的運用、相似三角形對應邊成比例、等腰梯形的性質(zhì)和一元二次方程的解的情況,在平時的學習中需要多加練習熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案