【題目】在△ABC中,∠C=2(∠A+∠B),則∠C=________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知P(a, b)是△ABC的邊AC上一點,△ABC經(jīng)平移后P點的對應(yīng)點P1(a+3,b-1),則下列平移過程正確的是( )
A. 先向左平移3個單位,再向下平移1個單位 B. 先向右平移3個單位,再向下平移1個單位
C. 先向左平移3個單位,再向上平移1個單位 D. 先向右平移3個單位,再向上平移1個單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 我市今年參加中考的學(xué)生人數(shù)大約為5.08×104人,對于這個用科學(xué)記數(shù)法表示的近似數(shù),下列說法正確的是( )
A.精確到百分位,有3個有效數(shù)字
B.精確到百分位,有5個有效數(shù)字
C.精確到百位,有3個有效數(shù)字
D.精確到百位,有5個有效數(shù)字
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
問題探究:不妨假設(shè)能搭成種不同的等腰三角形,為探究之間的關(guān)系,我們可以從特殊入手,通過試驗、觀察、類比,最后歸納、猜測得出結(jié)論.
探究一:
(1)用3根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
此時,顯然能搭成一種等腰三角形。所以,當(dāng)時,
(2)用4根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形
所以,當(dāng)時,
(3)用5根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形
所以,當(dāng)時,
(4)用6根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形
所以,當(dāng)時,
綜上所述,可得表①
3 | 4] | 5 | 6 | |
1 | 0 | 1 | 1 |
探究二:
(1)用7根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?
(仿照上述探究方法,寫出解答過程,并把結(jié)果填在表②中)
(2)分別用8根、9根、10根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三
角形?(只需把結(jié)果填在表②中)
7 | 8 | 9 | 10 | |
你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,……
解決問題:用根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
(設(shè)分別等于、、、,其中是整數(shù),把結(jié)果填在表③中)
問題應(yīng)用:用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(要求寫出解答過程)其中面積最大的等腰三角形每個腰用了__________________根木棒。(只填結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知10箱蘋果,以每箱15千克為標(biāo)準(zhǔn),超過15的千克數(shù)記為正數(shù),不足15的千克數(shù)記為負(fù)數(shù),稱重記錄如下:
,,,,,,,,,
(1)求10箱蘋果的總重量;
(2)若每箱蘋果的重量標(biāo)準(zhǔn)為15±0.5(千克),則這10箱中有幾箱不符合標(biāo)準(zhǔn)的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達(dá)點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達(dá)點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com