某種電纜在空中架設(shè)時(shí),兩端掛起的電纜下垂都近似拋物線(xiàn)y=
1
100
x2的形狀.今在一個(gè)坡度為1:5的斜坡上,俺水平距離間隔50米架設(shè)兩固定電纜的位置離地面高度為20米的塔柱(如圖),這種情況下在豎直方向上,下垂的電纜與地面的最近距離為( 。
A.12.75米B.13.75米C.14.75米D.17.75米

如圖,以點(diǎn)A為原點(diǎn),建立坐標(biāo)系,
∵斜坡的坡度為1:5,CD=50m,
∴CE=10m,
∴點(diǎn)B的坐標(biāo)為(50,10),
設(shè)拋物線(xiàn)的解析式為y=
1
100
x2+bx,
∴10=
1
100
×2500+50b,
解得,b=-
3
10
,
∴拋物線(xiàn)的解析式為y=
1
100
x2-
3
10
x=
1
100
(x-15)2-2.25,
∴設(shè)拋物線(xiàn)的頂點(diǎn)為M,則M(15,-2.25),作MF⊥CD,交DE于點(diǎn)G,交CD于點(diǎn)F,
∴MF=20-2.25=17.75m,又DF=15m,
∴FG=
1
5
DF=3m,
∴MG=MF-FG=17.75-3=14.75m;
即下垂的電纜與地面的最近距離為14.75m;
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖甲,分別以?xún)蓚(gè)彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線(xiàn)為x軸、y軸建立平面直角坐標(biāo)系(O、C、F三點(diǎn)在x軸正半軸上).若⊙P過(guò)A、B、E三點(diǎn)(圓心在x軸上),拋物線(xiàn)y=
1
4
x2+bx+c
經(jīng)過(guò)A、C兩點(diǎn),與x軸的另一交點(diǎn)為G,M是FG的中點(diǎn),正方形CDEF的面積為1.
(1)求B點(diǎn)坐標(biāo);
(2)求證:ME是⊙P的切線(xiàn);
(3)設(shè)直線(xiàn)AC與拋物線(xiàn)對(duì)稱(chēng)軸交于N,Q點(diǎn)是此對(duì)稱(chēng)軸上不與N點(diǎn)重合的一動(dòng)點(diǎn),
①求△ACQ周長(zhǎng)的最小值;
②若FQ=t,S△ACQ=S,直接寫(xiě)出S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)y=ax2-2ax+c與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)是(-1,0),O是坐標(biāo)原點(diǎn),且|OC|=3|OA|
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)直接寫(xiě)出直線(xiàn)BC的函數(shù)表達(dá)式;
(3)如圖1,D為y軸的負(fù)半軸上的一點(diǎn),且OD=2,以O(shè)D為邊作正方形ODEF.將正方形ODEF以每秒1個(gè)單位的速度沿x軸的正方向移動(dòng),在運(yùn)動(dòng)過(guò)程中,設(shè)正方形ODEF與△OBC重疊部分的面積為s,運(yùn)動(dòng)的時(shí)間為t秒(0<t≤2).
求:①s與t之間的函數(shù)關(guān)系式;
②在運(yùn)動(dòng)過(guò)程中,s是否存在最大值?如果存在,直接寫(xiě)出這個(gè)最大值;如果不存在,請(qǐng)說(shuō)明理由.
(4)如圖2,點(diǎn)P(1,k)在直線(xiàn)BC上,點(diǎn)M在x軸上,點(diǎn)N在拋物線(xiàn)上,是否存在以A、M、N、P為頂點(diǎn)的平行四邊形?若存在,請(qǐng)直接寫(xiě)出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:已知拋物線(xiàn)y1=-x2-2x+8的圖象交x軸于點(diǎn)A,B兩點(diǎn),與y軸的正半軸交于點(diǎn)C.拋物線(xiàn)y2經(jīng)過(guò)B、C兩點(diǎn)且對(duì)稱(chēng)軸為直線(xiàn)x=3.
(1)確定A、B、C三點(diǎn)的坐標(biāo);
(2)求拋物線(xiàn)y2的解析式;
(3)若過(guò)點(diǎn)(0,3)且平行于x軸的直線(xiàn)與拋物線(xiàn)y2交于M、N兩點(diǎn),以MN為一邊,拋物線(xiàn)y2上任意一點(diǎn)P(x,y)為頂點(diǎn)作平行四邊形,若平行四邊形的面積為S,寫(xiě)出S關(guān)于P點(diǎn)縱坐標(biāo)y的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖長(zhǎng)為2的線(xiàn)段PQ在x的正半軸上,從P、Q作x軸的垂線(xiàn)與拋物線(xiàn)y=x2交于點(diǎn)P′、Q′.
(1)已知P的坐標(biāo)為(k,0),求直線(xiàn)OP′的函數(shù)解析式;
(2)若直線(xiàn)OP′把梯形P′PQQ′的面積二等分,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商場(chǎng)將進(jìn)價(jià)為1800元的電冰箱以每臺(tái)2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降價(jià)50元,平均每天就能多售出4臺(tái).
(1)設(shè)每臺(tái)冰箱降價(jià)x元,商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)為y元,求y與x之間的函數(shù)關(guān)系式(不要求寫(xiě)自變量的取值范圍).
(2)商場(chǎng)想在這種冰箱的銷(xiāo)售中每天盈利8000元,同時(shí)又要使顧客得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,拋物線(xiàn)y=x2的頂點(diǎn)為P,A、B是拋物線(xiàn)上兩點(diǎn),ABx軸,四邊形ABCD為矩形,CD邊經(jīng)過(guò)點(diǎn)P,AB=2AD.
(1)求矩形ABCD的面積;
(2)如圖2,若將拋物線(xiàn)“y=x2”,改為拋物線(xiàn)“y=x2+bx+c”,其他條件不變,請(qǐng)猜想矩形ABCD的面積;
(3)若將拋物線(xiàn)“y=x2+bx+c”改為拋物線(xiàn)“y=ax2+bx+c”,其他條件不變,請(qǐng)猜想矩形ABCD的面積.(用a、b、c表示,并直接寫(xiě)出答案)
附加題:若將題中“y=x2”改為“y=ax2+bx+c”,“AB=2AD”條件不要,其他條件不變,探索矩形ABCD面積為常數(shù)時(shí),矩形ABCD需要滿(mǎn)足什么條件并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的動(dòng)點(diǎn)(不與A,B重合),過(guò)M點(diǎn)作MNBC交AC于點(diǎn)N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN.令A(yù)M=x.
(1)用含x的代數(shù)式表示△MNP的面積S;
(2)當(dāng)x為何值時(shí),⊙O與直線(xiàn)BC相切;
(3)在動(dòng)點(diǎn)M的運(yùn)動(dòng)過(guò)程中,記△MNP與梯形BCNM重合的面積為y,試求y關(guān)于x的函數(shù)表達(dá)式,并求x為何值時(shí),y的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在邊長(zhǎng)為4的正方形EFCD上截去一角,成為五邊形ABCDE,其中AF=2,BF=1,在AB上取一點(diǎn)P,設(shè)P到DE的距離PM=x,P到CD的距離PN=y,試寫(xiě)出矩形PMDN的面積S與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案