如右圖,在平面直角坐標(biāo)系xOy中,點(diǎn)的坐標(biāo)為(,1),點(diǎn)B是x軸上的一動(dòng)點(diǎn),以AB為邊作等邊三角形ABC. 當(dāng)C(x,y)在第一象限內(nèi)時(shí),下列圖象中,可以表示的函數(shù)關(guān)系的是(   )

A.                  B.                   C.                D.

 

A

解析:在y軸上截取OD=2,作CF⊥y軸于點(diǎn)F,連接AD,CD,OA,作AP⊥OB于P,

∵點(diǎn)A的坐標(biāo)為(-,1),∴OP=,AP=1 ∴OA===2,

∴sin∠AOP=,∴∠AOP=30°,∴∠AOD=60°,∴△AOD是等邊三角形,∴AO=AD,

∵△ABC是等邊三角形,∴AB=AC,∠CAB=∠OAD=60°,∴∠CAD=∠OAB,∴△ADC≌△AOB,

∴∠ADC=∠AOB=150°,∵∠ADF=120°,∴∠CDF=30°,∴DF=CF,∴y-2=x,即y=x+2.又x>0,則下列圖象中,可以表示y與x的函數(shù)關(guān)系的是選項(xiàng)A.故選A.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說(shuō)在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請(qǐng)寫出平移后點(diǎn)A′的坐標(biāo),記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•寶山區(qū)一模)在平面直角坐標(biāo)系中,拋物線過(guò)原點(diǎn)O,且與x軸交于另一點(diǎn)A(A在O右側(cè)),頂點(diǎn)為B.艾思軻同學(xué)用一把寬3cm的矩形直尺對(duì)拋物線進(jìn)行如下測(cè)量:(1)量得OA=3cm,(2)當(dāng)把直尺的左邊與拋物線的對(duì)稱抽重合,使得直尺左下端點(diǎn)與拋物線的頂點(diǎn)重合時(shí)(如圖1),測(cè)得拋物線與直尺右邊的交點(diǎn)C的刻度讀數(shù)為4.5cm.
艾思軻同學(xué)將A的坐標(biāo)記作(3,0),然后利用上述結(jié)論嘗試完成下列各題:
(1)寫出拋物線的對(duì)稱軸;
(2)求出該拋物線的解析式;
(3)探究拋物線的對(duì)稱軸上是否存在使△ACD周長(zhǎng)最小的點(diǎn)D;
(4)然后又將圖中的直尺(足夠長(zhǎng))沿水平方向向右平移到點(diǎn)A的右邊(如圖2),直尺的兩邊交x軸于點(diǎn)H,G,交拋物線于E,F(xiàn),探究梯形EFGH的面積S與線段EF的長(zhǎng)度是否存在函數(shù)關(guān)系.
同學(xué):如上述(3)(4)結(jié)論存在,請(qǐng)你幫艾思軻同學(xué)一起完成,如上述(3)(4)結(jié)論不存在,請(qǐng)你告訴艾思軻同學(xué)結(jié)論不存在的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,拋物線過(guò)原點(diǎn)O,且與x軸交于另一點(diǎn)A(A在O右側(cè)),頂點(diǎn)為B.艾思軻同學(xué)用一把寬3cm的矩形直尺對(duì)拋物線進(jìn)行如下測(cè)量:(1)量得OA=3cm,(2)當(dāng)把直尺的左邊與拋物線的對(duì)稱抽重合,使得直尺左下端點(diǎn)與拋物線的頂點(diǎn)重合時(shí)(如圖1),測(cè)得拋物線與直尺右邊的交點(diǎn)C的刻度讀數(shù)為4.5cm.
艾思軻同學(xué)將A的坐標(biāo)記作(3,0),然后利用上述結(jié)論嘗試完成下列各題:
(1)寫出拋物線的對(duì)稱軸;
(2)求出該拋物線的解析式;
(3)探究拋物線的對(duì)稱軸上是否存在使△ACD周長(zhǎng)最小的點(diǎn)D;
(4)然后又將圖中的直尺(足夠長(zhǎng))沿水平方向向右平移到點(diǎn)A的右邊(如圖2),直尺的兩邊交x軸于點(diǎn)H,G,交拋物線于E,F(xiàn),探究梯形EFGH的面積S與線段EF的長(zhǎng)度是否存在函數(shù)關(guān)系.
同學(xué):如上述(3)(4)結(jié)論存在,請(qǐng)你幫艾思軻同學(xué)一起完成,如上述(3)(4)結(jié)論不存在,請(qǐng)你告訴艾思軻同學(xué)結(jié)論不存在的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年上海市寶山區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系中,拋物線過(guò)原點(diǎn)O,且與x軸交于另一點(diǎn)A(A在O右側(cè)),頂點(diǎn)為B.艾思軻同學(xué)用一把寬3cm的矩形直尺對(duì)拋物線進(jìn)行如下測(cè)量:(1)量得OA=3cm,(2)當(dāng)把直尺的左邊與拋物線的對(duì)稱抽重合,使得直尺左下端點(diǎn)與拋物線的頂點(diǎn)重合時(shí)(如圖1),測(cè)得拋物線與直尺右邊的交點(diǎn)C的刻度讀數(shù)為4.5cm.
艾思軻同學(xué)將A的坐標(biāo)記作(3,0),然后利用上述結(jié)論嘗試完成下列各題:
(1)寫出拋物線的對(duì)稱軸;
(2)求出該拋物線的解析式;
(3)探究拋物線的對(duì)稱軸上是否存在使△ACD周長(zhǎng)最小的點(diǎn)D;
(4)然后又將圖中的直尺(足夠長(zhǎng))沿水平方向向右平移到點(diǎn)A的右邊(如圖2),直尺的兩邊交x軸于點(diǎn)H,G,交拋物線于E,F(xiàn),探究梯形EFGH的面積S與線段EF的長(zhǎng)度是否存在函數(shù)關(guān)系.
同學(xué):如上述(3)(4)結(jié)論存在,請(qǐng)你幫艾思軻同學(xué)一起完成,如上述(3)(4)結(jié)論不存在,請(qǐng)你告訴艾思軻同學(xué)結(jié)論不存在的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說(shuō)在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),
(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請(qǐng)寫出平移后點(diǎn)A′的坐標(biāo),記作______.

查看答案和解析>>

同步練習(xí)冊(cè)答案