(2004•太原)已知:如圖,在△ABC中,∠B=90度.O是BA上一點,以O(shè)為圓心、OB為半徑的圓與AB交于點E,與AC切于點D,AD=2,AE=1.設(shè)P是線段BA上的動點(P與A、B不重合),BP=x.
(1)求BE的長;
(2)求x為何值時,以P、A、D為頂點的三角形是等腰三角形;
(3)在點P的運動過程中,PD與△PBC的外接圓能否相切?若能,請證明;若不能,請說明理由;
(4)請再提出一個與動點P有關(guān)的數(shù)學(xué)問題,并直接寫出答案.

【答案】分析:(1)由于AC切⊙O于點D,可根據(jù)切割線定理求得AB的長,即可得到BE的長;
(2)此題要分三種情況討論:
①以A為頂角頂點,那么AP1=AD=2,根據(jù)AB的長即可求得此時BP1的長,即x的值;
②以P為頂角頂點,可作線段AD的中垂線,交AD于F、交AB于P2,則AF=FD、AP2=DP2;連接OD,易證得OD∥P2F,則P2F是△AOD的中位線,由此可得AP2=OA,即可得到BP即x的值;
③以D為頂角頂點,此時AD=DP3,可過D作AB的垂線,設(shè)垂足為M,根據(jù)等腰三角形三線合一的性質(zhì),可得AM=MP3=AP3,在Rt△ABC中,由切線長定理知BC=CD,已知AD、AB的長,即可由勾股定理求得BC、CD的長,易證得DM∥BC,根據(jù)平行線分線段成比例定理即可求得AM的長,由此可得到AP3的長,即可求得BP3即x的值.
(3)由于△PBC是直角三角形,則PC是△PBC外接圓的直徑,若PD能與△PBC的外接圓相切,則PD⊥PC,在Rt△PBC和Rt△PCD中,分別用勾股定理表示出PC的平方:
BC2+BP2=CD2-PD2,在(2)題已證得BC=CD,則BP2=-PD2,即B、P、D三點重合,顯然這種情況是不成立的,故PD不能與△PBC的外接圓相切.
(4)此題是開放性試題,可根據(jù)日常學(xué)習(xí)過程中的積累,來提出符合題意的問題.
解答:解:(1)∵AD與⊙O相切于點D,
∴AD2=AE•AB;
由AD=2,AE=1,得AB=4;
∴BE=AB-AE=3;

(2)①以A為頂角頂點時,AP1=AD=2,x=BP1=BA-P1A=2;
②以P為頂角頂點時,作AD的垂直平分線P2F交AB于P2;
連接OD,則OD⊥AD,且OD∥P2F;
∴P2A=OA=x=BA-P2A=;
③以D為頂角頂點時,DP3=DA=2,過D作DM⊥AB于M,則DM∥BC;
由BC2+AB2=(AD+DC)2,得BC=DC=3,AM=,AP3=2AM=
∴x=BA-P3A=2AM=,
綜上所述,當(dāng)x等于2、、時,△APD是等腰三角形;

(3)PD與△PBC的外接圓不能相切;
理由:假設(shè)PD與△PBC的外接圓相切,
則PD⊥PC,
在Rt△PBC中,PC>BC(直角三角形中,斜邊大于直角邊)
在Rt△PCD中,CD>PC(直角三角形中,斜邊大于直角邊)
而BC=CD,與上面的矛盾,所以,不存在.
(4)答案不唯一,如:
①x為何值時,以P、D、A為頂點的三角形與△ABC相似;
答:當(dāng)x=時,以P、D、A為頂點的三角形與△ABC相似.
②當(dāng)x為何值時,PD+PC的和最;
答:當(dāng)x=時,PD+PC的和最小.
點評:此題涉及的知識點較多,有:切線的判定和性質(zhì)、切線長定理、勾股定理、平行線分線段成比例定理、等腰三角形的判定和性質(zhì)等重要知識點;需注意的是(2)題中,等腰三角形的腰和底不確定,要分類討論,以免漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圖形的對稱》(03)(解析版) 題型:填空題

(2004•太原)已知:如圖,Rt△ABC中,∠C=90°,沿過點B的一條直線BE折疊△ABC,使點C恰好落在AB邊的中點D處,則∠A=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2004•太原)已知:如圖△ABC中,高AD和BE相交于點H,且HA=HC.
(1)求證:∠1=∠2;
(2)用直尺和圓規(guī)畫出經(jīng)過B、H、C三點的⊙O(不寫畫法);
(3)證明EC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《整式》(03)(解析版) 題型:解答題

(2004•太原)已知實數(shù)a、b滿足(a+b)2=1,(a-b)2=25,求a2+b2+ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年海南省海口市舊州中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

(2004•太原)已知:如圖,Rt△ABC中,∠C=90°,沿過點B的一條直線BE折疊△ABC,使點C恰好落在AB邊的中點D處,則∠A=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年山西省太原市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2004•太原)已知:矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,點B的坐標(biāo)為(3,-2),則矩形的面積等于   

查看答案和解析>>

同步練習(xí)冊答案