【題目】如圖,已知∠ACB=∠DCE=90°,AC=BC,AB=,CE=CD,AE=2,∠CAE=45°,求AD的長(zhǎng).

【答案】6.

【解析】

連接BE,根據(jù)已知條件先證出∠BCE=ACD根據(jù)SAS證出△ACD≌△BCE,得出AD=BE,再根據(jù)勾股定理求出AB然后根據(jù)∠BAC=CAE=45°,求出∠BAE=90°.在RtBAE,根據(jù)勾股定理求出BE,從而得出AD

1)如圖連接BE

∵∠ACB=DCE=90°,∴∠ACB+∠ACE=DCE+∠ACE,即∠BCE=ACD

ACD和△BCE中,∵∴△ACD≌△BCE,AD=BE

∵∠BAC=CAE=45°,∴∠BAE=90°.在RtBAE,AB=,AE=2BE= =6,AD=6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一塊長(zhǎng)方體木塊的各棱長(zhǎng)如圖所示,一只蜘蛛在木塊的一個(gè)頂點(diǎn)A處,一只蒼蠅在這個(gè)長(zhǎng)方體上和蜘蛛相對(duì)的頂點(diǎn)B處,蜘蛛急于捉住蒼蠅,沿著長(zhǎng)方體的表面向上爬.

(1)如果D是棱的中點(diǎn),蜘蛛沿“AD→DB”路線爬行,它從A點(diǎn)爬到B點(diǎn)所走的路程為多少?

(2)你認(rèn)為“AD→DB”是最短路線嗎?如果你認(rèn)為不是,請(qǐng)計(jì)算出最短的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們,足球是世界上第一大運(yùn)動(dòng),你熱愛足球運(yùn)動(dòng)嗎?已知在足球比賽中,勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)得0分,一隊(duì)共踢了30場(chǎng)比賽,負(fù)了9場(chǎng),共得47分,那么這個(gè)隊(duì)勝了( 。

A. 10場(chǎng) B. 11場(chǎng) C. 12場(chǎng) D. 13場(chǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下是兩張不同類型火車的車票(表示動(dòng)車,表示高鐵):

1根據(jù)車票中的信息填空:該列動(dòng)車和高鐵是__________向而行(填).

2已知該列動(dòng)車和高鐵的平均速度分別為、,兩列火車的長(zhǎng)度不計(jì).

①經(jīng)過測(cè)算,如果兩列火車直達(dá)終點(diǎn)(即中途都不停靠任何站點(diǎn)),高鐵比動(dòng)車將早到,求、兩地之間的距離.

②在①中測(cè)算的數(shù)據(jù)基礎(chǔ)上,已知兩地途中依次設(shè)有個(gè)站點(diǎn)、、、、,且,動(dòng)車每個(gè)站點(diǎn)都?,高鐵只停靠、兩個(gè)站點(diǎn),兩列火車在每個(gè)停靠站點(diǎn)都停留.求該列高鐵追上動(dòng)車的時(shí)刻.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=ECD=90°,DAB邊上一點(diǎn).

(1)求證:△ACE≌△BCD;

(2)AD=5,BD=12,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在所給的網(wǎng)格圖中,完成下列各題(用直尺畫圖,否則不給分)

(1)畫出格點(diǎn)ABC關(guān)于直線DE的對(duì)稱的△A1B1C1;

(2)在DE上畫出點(diǎn)P,使PA+PC最;

(3)在DE上畫出點(diǎn)Q,使QA﹣QB最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)A、BC在數(shù)軸上對(duì)應(yīng)的數(shù)分別為a、b、c滿足|a+5|+|b-1|+|c-2|=0

1)在數(shù)軸上是否存在點(diǎn)P,使得PA+PB=PC?若存在,求出點(diǎn)P對(duì)應(yīng)的數(shù);若不存在,請(qǐng)說明理由;

2)若點(diǎn)AB,C同時(shí)開始在數(shù)軸上分別以每秒1個(gè)單位長(zhǎng)度,每秒3個(gè)單位長(zhǎng)度,每秒5個(gè)單位長(zhǎng)度沿著數(shù)軸負(fù)方向運(yùn)動(dòng).經(jīng)過tt≥1)秒后,試問AB-BC的值是否會(huì)隨著時(shí)間t的變化而變化?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從A地將一批物品運(yùn)往B地,再返回A地,圖6表示兩車離A地的距離s(千米)隨時(shí)間t(小時(shí))變化的圖象,已知乙車到達(dá)B地后以30千米/小時(shí)的速度返回.請(qǐng)根據(jù)圖象中的數(shù)據(jù)回答:

(1)甲車出發(fā)多長(zhǎng)時(shí)間后被乙車追上?

(2)甲車與乙車在距離A地多遠(yuǎn)處迎面相遇?

(3)甲車從B地返回的速度多大時(shí),才能比乙車先回到A地?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E、H分別在正方形ABCD的邊AB、BC上,且AE=BH

求證:(1)DE=AH (2)DEAH

查看答案和解析>>

同步練習(xí)冊(cè)答案