【題目】如圖,C,D是以線段AB為直徑的⊙O上兩點,若CA=CD,且∠ACD=30°,則∠CAB=(
A.15°
B.20°
C.25°
D.30°

【答案】A
【解析】解:∵∠ACD=30°,CA=CD, ∴∠CAD=∠CDA= (180°﹣30°)=75°,
∴∠ABC=∠ADC=75°,
∵AB是直徑,
∴∠ACB=90°,
∴∠CAB=90°﹣∠B=15°,
故選A.
【考點精析】本題主要考查了等腰三角形的性質和圓周角定理的相關知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列有理數(shù)大小關系判斷正確的是( 。

A. 0>|﹣10| B. ﹣(﹣)>﹣|﹣| C. |﹣3|<|+3| D. ﹣1>﹣0.01

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:用3A型車和2B型車載滿貨物一次可運貨17噸;用2A型車和3B型車載滿貨物一次可運貨l8噸,某物流公刊現(xiàn)有35噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.

根據(jù)以上信息,解答下列問題:

(1)lA型車和lB型車都載滿貨物一次可分別運貨多少噸?

(2)請你幫該物流公司設計租車方案;

(3)A型車每輛需租金200元/次,B型車每輛需租金240元/次,請選出最省錢的租車方案,并求出最少租車費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P.
(1)如圖①,若∠COB=2∠PCB,求證:直線PC是⊙O的切線;
(2)如圖②,若點M是AB的中點,CM交AB于點N,MNMC=36,求BM的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)填在相應的括號內

, -, 0, ,3.1415926, 20%, 3, 2, -1,3.1010010001…(每兩個1之間逐次增加10)

①正數(shù)集合{ ……}

②負數(shù)集合{ ……}

③整數(shù)集合{ ……}

④負分數(shù)集合{ ……}

⑤無理數(shù)集合{ ……}

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是弧AD的中點,弦CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE、CB于點P、Q,連接AC,給出下列結論:①∠DAC=∠ABC;②AD=CB;③點P是△ACQ的外心;④AC2=AEAB;⑤CB∥GD,其中正確的結論是(
A.①③⑤
B.②④⑤
C.①②⑤
D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD的四個角向內折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長是( 。

A. 12厘米 B. 16厘米 C. 20厘米 D. 28厘米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3,P是AC上一動點,則PB+PE的最小值是( ).

A. 5 B. 5 C. 6 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,ADCBDE均為等腰三角形,∠CAD=DBE,AC=AD,BD=BE,連接CE,點GCE的中點,過點EAC的平行線與線段AG延長線交于點F.

(1)當A,D,B三點在同一直線上時(如圖1),求證:GAF的中點;

(2)將圖1BDE繞點D旋轉到圖2位置時,點A,D,G,F(xiàn)在同一直線上,點H在線段AF的延長線上,且EF=EH,連接AB,BH,試判斷ABH的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案