已知拋物線過點(diǎn)A(-1,0),B(0,6),對稱軸為直線x=1
(1)求拋物線的解析式
(2)畫出拋物線的草圖
(3)根據(jù)圖象回答:當(dāng)x取何值時,y>0
(1)(4分)(2)圖略(3分)(3)

試題分析:設(shè)該拋物線的解析式是當(dāng)A,B在拋物線上時則有x=-1時,4a+c=0,a+c=6,所以
由題意知:=,所以當(dāng)時,滿足條件
點(diǎn)評:本題屬于對拋物線的基本知識的理解和運(yùn)用
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線與x軸的交點(diǎn)分別為原點(diǎn)O和點(diǎn)A,點(diǎn)B(2,n)在這條拋物線上.
(1)求點(diǎn)B的坐標(biāo);
(2)點(diǎn)P在線段OA上,從點(diǎn)O出發(fā)向點(diǎn)A運(yùn)動,過點(diǎn)P作x軸的垂線,與直線OB交于點(diǎn)E,以PE為邊在PE右側(cè)作正方形PEDC(當(dāng)點(diǎn)P運(yùn)動時,點(diǎn)C、D也隨之運(yùn)動).
①當(dāng)正方形PEDC頂點(diǎn)D落在此拋物線上時,求OP的長;
②若點(diǎn)P從點(diǎn)O出發(fā)向點(diǎn)A作勻速運(yùn)動,速度為每秒1個單位,同時線段OA上另一個點(diǎn)Q從點(diǎn)A出發(fā)向點(diǎn)O作勻速運(yùn)動,速度為每秒2個單位(當(dāng)點(diǎn)Q到達(dá)點(diǎn)O時停止運(yùn)動,點(diǎn)P也停止運(yùn)動).過Q作x軸的垂線,與直線AB交于點(diǎn)F,在QF的左側(cè)作正方形QFMN(當(dāng)點(diǎn)Q運(yùn)動時,點(diǎn)M、N也隨之運(yùn)動).若點(diǎn)P運(yùn)動到t秒時,兩個正方形分別有一條邊恰好落在同一條直線上,求此刻t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC斜靠在兩坐標(biāo)軸上放在第二象限,點(diǎn)C的坐標(biāo)為(-1,0).B點(diǎn)在拋物線的圖象上,過點(diǎn)B作軸,垂足為D,且B點(diǎn)橫坐標(biāo)為

(1)求證:
(2)求BC所在直線的函數(shù)關(guān)系式;
(3)拋物線的對稱軸上是否存在點(diǎn)P,使 △ACP是以AC為直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,等邊△ABC的邊長為4,M為BC上一動點(diǎn)(M不與B、C重合),若EB=1,∠EMF=60°,點(diǎn)E在AB邊上,點(diǎn)F在AC邊上.設(shè)BM=x,CF=y,則當(dāng)點(diǎn)M從點(diǎn)B運(yùn)動到點(diǎn)C時,y關(guān)于x的函數(shù)圖象是(   )

A          B             C             D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一條拋物線經(jīng)過點(diǎn)(0,0)、(12,0),則這條拋物線的對稱軸是直線                

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將二次函數(shù)化為的形式為_________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,則下列結(jié)論中正確的是:(  )

A  a>0  b<0  c>0  
B  a<0  b<0  c>0
C  a<0  b>0  c<0
D  a<0  b>0  c>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

【問題情境】
已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最小?最小值是多少?
【數(shù)學(xué)模型】
設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)關(guān)系式為
【探索研究】
(1)我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)的圖象和性質(zhì).
①填寫下表,畫出函數(shù)的圖象;
x




1
2
3
4

y

 
 
 
 
 
 
 


②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(小)值時,除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數(shù)的最小值.
【解決問題】用上述方法解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)的圖象上有A(),B(),C(2,)三個點(diǎn),則,的大小關(guān)系是(   )。
A.>>B.>>C.>>D.>>

查看答案和解析>>

同步練習(xí)冊答案