【題目】如圖,在△ABC中,AB=BC=AC=20 cm.動點P,Q分別從A,B兩點同時出發(fā),沿三角形的邊勻速運動.已知點P,點Q的速度都是2 cm/s,當點P第一次到達B點時,P,Q兩點同時停止運動.設點P的運動時間為t(s).
(1)∠A=______度;
(2)當0<t<10,且△APQ為直角三角形時,求t的值;
(3)當△APQ為等邊三角形時,直接寫出t的值.
【答案】(1)60;(2)或;(3)5或20
【解析】
(1)根據(jù)等邊三角形的性質(zhì)即可解答;
(2)需分∠APQ=90°和∠AQP=90°兩種情況進行解答;
(3)需分以下兩種情況進行解答:①由∠A=60°,則當AQ=AP時,△APQ為等邊三角形;②當P于B重合,Q與C重合時,△APQ為等邊三角形.
解:(1)60°.
(2)∵∠A=60°,
當∠APQ=90°時,∠AQP=90°-60°=30°.
∴QA=2PA.
即
解得
當∠AQP=90°時,∠APQ=90°-60°=30°.
∴PA=2QA.
即
解得
∴當0<t<10,且△APQ為直角三角形時,t的值為.
(3)①由題意得:AP=2t,AQ=20-2t
∵∠A=60°
∴當AQ=AP時,△APQ為等邊三角形
∴2t=20-2t,解得t=5
②當P于B重合,Q與C重合,則所用時間為:4÷2=20
綜上,當△APQ為等邊三角形時,t=5或20.
科目:初中數(shù)學 來源: 題型:
【題目】某校傳統(tǒng)文化社團某天進行納新活動,組織初一新生選報興趣學社,由于當天報名人數(shù)較多,從現(xiàn)場隨機抽查部分學生的報名意向進行統(tǒng)計,并繪制出不完全的頻數(shù)分布表和頻數(shù)分布直方圖,如下所示:
傳統(tǒng)文化 學社 | 報名頻數(shù) (人數(shù)) | 報名 頻率 | 錄取率 |
燈謎 | 12 | ||
書法 | 27 | 0.45 | 0.4 |
剪紙 | 0.3 | 0.35 | |
南音 |
請根據(jù)上述圖表,完成下列各題:
(1)填空: , , ,現(xiàn)場共抽查了 名學生;
(2)請把條線統(tǒng)計圖補充完整;
(3)現(xiàn)有1200個學生報名參加該校傳統(tǒng)文化社團,則可以估計被剪紙學社錄取的學生數(shù)比南音學社錄取的學生數(shù)多了多少人?若把所有被錄取人數(shù)按表中學社制作成扇形統(tǒng)計圖,則被燈謎學社錄取的學生數(shù)的扇形圓心角為多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,以AB為直徑的⊙O交BC于點D,交AC于點E,連結(jié)DE,過點B作BP平行于DE,交⊙O于點P,連結(jié)EP、CP、OP.
(1)BD=DC嗎?說明理由;
(2)求∠BOP的度數(shù);
(3)求證:CP是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學概念:百度百科上這樣定義絕對值函數(shù):y=│x│=
并給出了函數(shù)的圖像(如圖).
方法遷移
借鑒研究正比例函數(shù)y=kx與一次函數(shù)y=kx+b(k,b是常數(shù),且k≠0)之間關系的經(jīng)驗,我們來研究函數(shù)y=│x+a│(a是常數(shù))的圖像與性質(zhì).
“從‘1’開始”
我們嘗試從特殊到一般,先研究當a=1時的函數(shù)y=│x+1│.
按照要求完成下列問題:
(1)觀察該函數(shù)表達式,直接寫出y的取值范圍;
(2)通過列表、描點、畫圖,在平面直角坐標系中畫出該函數(shù)的圖像.
“從‘1’到一切”
(3)繼續(xù)研究當a的值為-2,-,2,3,…時函數(shù)y=│x+a│的圖像與性質(zhì),
嘗試總結(jié):
①函數(shù)y=│x+a│(a≠0)的圖像怎樣由函數(shù)y=│x│的圖像平移得到?
②寫出函數(shù)y=│x+a│的一條性質(zhì).
知識應用
(4)已知A(x1,y1),B(x2,y2)是函數(shù)y=│x+a│的圖像上的任意兩點,且滿足x1<x2≤-1時, y1>y2,則a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,y關于x的二次函數(shù)是( )
A. y=ax2+bx+c B. y=x(x﹣1)
C. y= D. y=(x﹣1)2﹣x2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是等邊△ABC內(nèi)一點,∠AOC=100°,∠AOB=α,以OB為邊作等邊△BOD,連接CD.
(1)求證:△ABO≌△CBD;
(2)當α=150°時,試判斷△COD的形狀,并說明理由;
(3)探究:當α為多少度時△COD是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校甲、乙兩名同學去愛國主義教育基地參觀,該基地與學校相距2400米.甲從學校步行去基地,出發(fā)5分鐘后乙再出發(fā),乙從學校騎自行車到基地. 乙騎行到一半時,發(fā)現(xiàn)有東西忘帶,立即返回,拿好東西之后再從學校出發(fā).在騎行過程中,乙的速度保持不變,最后甲、乙兩人同時到達基地. 已知,乙騎行的總時間是甲步行時間的.設甲步行的時間為(分),圖中線段OA表示甲離開學校的路程(米)與(分)的函數(shù)關系的圖像.圖中折線B—C—D和線段EA表示乙離開學校的路程(米)與(分)的函數(shù)關系的圖像.根據(jù)圖中所給的信息,解答下列問題:
(1)甲步行的速度和乙騎行的速度;
(2)甲出發(fā)多少時間后,甲、乙兩人第二次相遇?
(3)若(米)表示甲、乙兩人之間的距離,當時,求(米)關于(分)的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com