【題目】小方與同學(xué)一起去郊游,看到一棵大樹(shù)斜靠在一小土坡上,他想知道樹(shù)有多長(zhǎng),于是他借來(lái)測(cè)角儀和卷尺.如圖,他在點(diǎn)C處測(cè)得樹(shù)AB頂端A的仰角為30°,沿著CB方向向大樹(shù)行進(jìn)10米到達(dá)點(diǎn)D,測(cè)得樹(shù)AB頂端A的仰角為45°,又測(cè)得樹(shù)AB傾斜角∠1=75°.

(1)求AD的長(zhǎng).

(2)求樹(shù)長(zhǎng)AB.

【答案】(1)(5+5) (2)10

【解析】(1)過(guò)點(diǎn)A作AE⊥CB于點(diǎn)E,設(shè)AE=x,分別表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;

(2)過(guò)點(diǎn)B作BF⊥AC于點(diǎn)F,設(shè)BF=y,分別表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的長(zhǎng)度.

解:(1)過(guò)點(diǎn)A作AE⊥CB于點(diǎn)E,

設(shè)AE=x,

在Rt△ACE中,∠C=30°,

∴CE=x,

在Rt△ADE中,∠ADE=45°,

∴DE=AE=x,

∴CE﹣DE=10,即x﹣x=10,

解得:x=5(+1),

∴AD=x=5+5

答:AD的長(zhǎng)為(5+5)米.

(2)由(1)可得AC=2AE=(10+10)米,

過(guò)點(diǎn)B作BF⊥AC于點(diǎn)F,

∵∠1=75°,∠C=30°,

∴∠CAB=45°,

設(shè)BF=y,

在Rt△CBF中,CF=BF=y,

在Rt△BFA中,AF=BF=y,

y+y=(10+10),

解得:y=10,

在Rt△ABF中,AB==10米.

答:樹(shù)高AB的長(zhǎng)度為10米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)長(zhǎng)方形的面積為(6ab2-4a2b),一邊長(zhǎng)為2ab,則它的另一邊長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)坡的坡比為i,坡角為α,則下列等式成立的是( )
A.i=sinα
B.i=cosα
C.i=tanα
D.i=cotα

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列事件中,最適合采用普查的是( )

A.了解一批燈泡的使用壽命B.了解中央電視臺(tái)《最強(qiáng)大腦》欄目的收視率

C.了解全國(guó)中學(xué)生體重情況D.了解某班學(xué)生對(duì)七步洗手法的知曉率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E,F(xiàn),G分別是AD,CD,BC上的點(diǎn),且BE=EF,BE⊥EF,EG⊥BF.若FC=1,AE=2,則BG的長(zhǎng)是( )

A.2.6
B.2.5
C.2.4
D.2.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=BC,點(diǎn)D是AB的中點(diǎn),分別過(guò)點(diǎn)D作DE⊥AC,DF⊥BC,垂足分別為點(diǎn)E、F.求證:四邊形CEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式
(1)a3﹣2a2+a
(2)a2(x﹣y)+16(y﹣x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A(﹣2,3),B2,1),將線(xiàn)段AB平移后,A點(diǎn)的坐標(biāo)變?yōu)椋ī?/span>3,2),則點(diǎn)B的坐標(biāo)變?yōu)椋ā 。?/span>

A. (﹣12B. 1,0C. (﹣1,0D. 1,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列每組數(shù)分別是三根小木棒的長(zhǎng)度,其中能擺成三角形的是(  )

A.3cm,4cm,5cmB.7cm,8cm,15cm

C.3cm,12cm,20cmD.5cm,5cm,11cm

查看答案和解析>>

同步練習(xí)冊(cè)答案