在直角梯形ABCD中,ABDC,AB⊥BC,∠A=60°,AB=2CD,E、F分別為AB、AD的中點(diǎn),連接EF、EC、BF、CF.
(1)判斷四邊形AECD的形狀(不證明);
(2)在不添加其它條件下,寫(xiě)出圖中一對(duì)全等的三角形,用符號(hào)“≌”表示,并證明;
(3)若CD=2,求四邊形BCFE的面積.
(1)平行四邊形(2分);

(2)△BEF≌△CDF(3分)或(△AFB≌△EBC≌△EFC)
證明:連接DE,
∵AB=2CD,E為AB中點(diǎn),
∴DC=EB,
又∵DCEB,
∴四邊形BCDE是平行四邊形,
∵AB⊥BC,
∴四邊形BCDE為矩形,
∴∠AED=90°,∠CDE=∠BED=90°,BE=CD,
在Rt△AED中,∠A=60°,F(xiàn)為AD的中點(diǎn),
∴AF=
1
2
AD=EF,
∴△AEF為等邊三角形,
∴∠DFE=180°-60°=120°,
∵EF=DF,
∴∠FDE=∠FED=30°.
∴∠CDF=∠BEF=120°,
在△BEF和△FDC中,
DF=EF
∠CDF=∠BEF=120°
DC=BE
,
∴△BEF≌△CDF(SAS).(6分)(其他情況證明略)

(3)若CD=2,則AD=4,
∵∠A=60°,
∴sin60°=
DE
AD
=
3
2
,
∴DE=AD•
3
2
=2
3

∴DE=BC=2
3
,
∵四邊形AECD為平行四邊形,
∴S△ECF與S四邊形AECD等底同高,
∴S△ECF=
1
2
S四邊形AECD=
1
2
CD•DE=
1
2
×2×2
3
=2
3
,
S△CBE=
1
2
BE•BC=
1
2
×2×2
3
=2
3

∴S四邊形BCFE=S△ECF+S△EBC=2
3
+2
3
=4
3
.(9分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

梯形ABCD的一條對(duì)角線將該梯形分成面積比為1:5的兩個(gè)三角形,則梯形ABCD的中位線MN,將該梯形分成的兩個(gè)梯形的面積比為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩個(gè)全等的直角三角形紙片ABC、DEF,如圖(1)放置,點(diǎn)B、D重合,點(diǎn)F在BC上,AB與EF交于點(diǎn)G、∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.
(1)求證:△EGB是等腰三角形;
(2)若紙片DEF不動(dòng),問(wèn)△ABC繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)最小______度時(shí),四邊形ACDE成為以ED為底的梯形(如圖(2)).求此梯形的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,一張矩形紙片沿BC折疊,頂點(diǎn)A落在點(diǎn)A′處,第二次過(guò)A′,再折疊,使折痕DEBC,若AB=2,AC=3,則梯形BDEC的面積為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在梯形ABCD中,ABDC,∠ADC的平分線與∠BCD的平分線的交點(diǎn)E恰在AB上.若AD=7cm,BC=8cm,則AB的長(zhǎng)度是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在直角梯形ABCD中,ABCD,BC=5,∠A為直角,DC=3,AB=7,則AD=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,且AD>BC,BC=6cm,AD=9cm,P、Q分別從A、C同時(shí)出發(fā),P以1cm/s的速度由A向D運(yùn)動(dòng),Q以2cm/s的速度由C向B運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也停止運(yùn)動(dòng).試計(jì)算,
(1)當(dāng)運(yùn)動(dòng)時(shí)間為多少時(shí),直線PQ四邊形截出四邊形是一個(gè)平行四邊形?
(2)在直線PQ所截出的平行四邊形中,在PQ的對(duì)邊任取一點(diǎn)O,連接OP、OQ,得到△OPQ,則△OPQ的面積與直線PQ所截出的平行四邊形的面積有何關(guān)系?并說(shuō)明理由.(在圖1、圖2中任取一種畫(huà)出圖形,說(shuō)明理由即可.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等腰梯形ABCD中,ADBC,∠ABC=60゜,且AC⊥AB,AB=20,則梯形ABCD的周長(zhǎng)為(  )
A.100B.50
3
C.40+20
3
D.60
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在梯形ABCD中,ADBC,且AD=3,BC=9,則S△AOD:S△BOC為( 。
A.1:3B.1:9C.1:
3
D.2:5

查看答案和解析>>

同步練習(xí)冊(cè)答案