【題目】(背景知識(shí))
數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:
例如,若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則、兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為.
(問題情境)
在數(shù)軸上,點(diǎn)表示的數(shù)為-20,點(diǎn)表示的數(shù)為10,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)也從點(diǎn)出發(fā)沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),已知運(yùn)動(dòng)到4秒鐘時(shí),、兩點(diǎn)相遇,且動(dòng)點(diǎn)、運(yùn)動(dòng)的速度之比是(速度單位:單位長(zhǎng)度/秒).
備用圖
(綜合運(yùn)用)
(1)點(diǎn)的運(yùn)動(dòng)速度為______單位長(zhǎng)度/秒,點(diǎn)的運(yùn)動(dòng)速度為______單位長(zhǎng)度/秒;
(2)當(dāng)時(shí),求運(yùn)動(dòng)時(shí)間;
(3)若點(diǎn)、在相遇后繼續(xù)以原來的速度在數(shù)軸上運(yùn)動(dòng),但運(yùn)動(dòng)的方向不限,我們發(fā)現(xiàn):隨著動(dòng)點(diǎn)、的運(yùn)動(dòng),線段的中點(diǎn)也隨著運(yùn)動(dòng).問點(diǎn)能否與原點(diǎn)重合?若能,求出從、相遇起經(jīng)過的運(yùn)動(dòng)時(shí)間,并直接寫出點(diǎn)的運(yùn)動(dòng)方向和運(yùn)動(dòng)速度;若不能,請(qǐng)說明理由.
【答案】(1)動(dòng)點(diǎn)P運(yùn)動(dòng)的速度為4.5單位長(zhǎng)度/秒,動(dòng)點(diǎn)Q運(yùn)動(dòng)的速度為3單位長(zhǎng)度/秒;(2)運(yùn)動(dòng)時(shí)間為或秒;(3)點(diǎn)M能與原點(diǎn)重合,它沿?cái)?shù)軸正方向運(yùn)動(dòng),運(yùn)動(dòng)速度為或沿?cái)?shù)軸正方向運(yùn)動(dòng),運(yùn)動(dòng)速度為,理由見解析
【解析】
(1)設(shè)動(dòng)點(diǎn)P運(yùn)動(dòng)的速度分別為3x單位長(zhǎng)度/秒,Q運(yùn)動(dòng)的速度分別為2x單位長(zhǎng)度/秒.根據(jù)“運(yùn)動(dòng)到4秒鐘時(shí),P、Q兩點(diǎn)相遇”列方程,求解即可;
(2)設(shè)運(yùn)動(dòng)時(shí)間為t秒.點(diǎn)P表示的數(shù)為-20+4.5t,點(diǎn)Q表示的數(shù)為10-3t,根據(jù)“PQ=AB”,列方程,求解即可;
(3)先求出P、Q相遇點(diǎn)表示的數(shù),設(shè)從P、Q相遇起經(jīng)過的運(yùn)動(dòng)時(shí)間為t秒時(shí),PQ的中點(diǎn)M與原點(diǎn)重合,求出P、Q此時(shí)表示的數(shù).然后分四種情況列方程,求解即可.
(1)設(shè)動(dòng)點(diǎn)P運(yùn)動(dòng)的速度分別為3x單位長(zhǎng)度/秒,Q運(yùn)動(dòng)的速度分別為2x單位長(zhǎng)度/秒.根據(jù)題意得:
4×3x+4×2x=30,(或-20+4×3x=10-4×2x)
解得:x=1.5.
3x=4.5(單位長(zhǎng)度/秒),2x=3(單位長(zhǎng)度/秒).
答:動(dòng)點(diǎn)P運(yùn)動(dòng)的速度為4.5單位長(zhǎng)度/秒,動(dòng)點(diǎn)Q運(yùn)動(dòng)的速度為3單位長(zhǎng)度/秒.
(2)設(shè)運(yùn)動(dòng)時(shí)間為t秒.
由題意知:點(diǎn)P表示的數(shù)為-20+4.5t,點(diǎn)Q表示的數(shù)為10-3t,根據(jù)題意得:
|(-20+4.5t)-(10-3t)|=×|(-20)-10|
整理得:|7.5t-30|=10
7.5t-30=10或7.5t-30=-10
解得:t=或t=.
答:運(yùn)動(dòng)時(shí)間為或秒.
(3)P、Q相遇點(diǎn)表示的數(shù)為-20+4×4.5=-2(注:當(dāng)P、Q兩點(diǎn)重合時(shí),線段PQ的中點(diǎn)M也與P、Q兩點(diǎn)重合)
設(shè)從P、Q相遇起經(jīng)過的運(yùn)動(dòng)時(shí)間為t秒時(shí),點(diǎn)M與原點(diǎn)重合.
①點(diǎn)P、Q均沿?cái)?shù)軸正方向運(yùn)動(dòng),則:
解得:t=.
此時(shí)點(diǎn)M能與原點(diǎn)重合,它沿?cái)?shù)軸正方向運(yùn)動(dòng),運(yùn)動(dòng)速度為2÷(單位長(zhǎng)度/秒);
②點(diǎn)P沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)Q沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),則:
解得:t=.
此時(shí)點(diǎn)M能與原點(diǎn)重合,它沿?cái)?shù)軸正方向運(yùn)動(dòng),運(yùn)動(dòng)速度為2÷=(單位長(zhǎng)度/秒);
③點(diǎn)P沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),點(diǎn)Q沿?cái)?shù)軸正方向運(yùn)動(dòng),則:
解得:t=-(舍去).
此時(shí)點(diǎn)M不能與原點(diǎn)重合;
④點(diǎn)P沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),點(diǎn)Q沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),則:
解得:t=-(舍去).
此時(shí)點(diǎn)M不能與原點(diǎn)重合.
綜上所述:點(diǎn)M能與原點(diǎn)重合,它沿?cái)?shù)軸正方向運(yùn)動(dòng),運(yùn)動(dòng)速度為或沿?cái)?shù)軸正方向運(yùn)動(dòng),運(yùn)動(dòng)速度為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線a,b,c,d,e,且∠1=∠2,∠3=∠4,則a與c平行嗎?為什么?
解:a與c平行.
理由:因?yàn)椤?=∠2(_________________),
所以a∥b(_________________).
因?yàn)椤?=∠4(_________________),
所以b∥c(_________________).
所以a∥c(_________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知射線AB與直線CD交于點(diǎn)O,OF平分∠BOC,OG⊥OF于點(diǎn)O,AE∥OF,且∠A=30°.
(1)求∠DOF的度數(shù);
(2)試說明OD平分∠AOG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線a∥b,點(diǎn)、分別在、上,且,.點(diǎn)、從點(diǎn)同時(shí)出發(fā),分別以1個(gè)單位/秒,2個(gè)單位/秒的速度,在直線b上沿相反方向運(yùn)動(dòng).設(shè)運(yùn)動(dòng)秒后,得到△ACD.(友情提醒:本題的結(jié)果可用根號(hào)表示)
(1)當(dāng)秒時(shí),點(diǎn)到直線的距離為 ;
(2)若△ACD是直角三角形,t的值為 ;
(3)若△ACD是等腰三角形,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角△BAD中,延長(zhǎng)斜邊BD到點(diǎn)C,使DC= BD,連接AC,若tanB= ,則tan∠CAD的值( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,從邊長(zhǎng)為a的正方形紙片中剪去一個(gè)邊長(zhǎng)為b的小正方形,則陰影部分的面積為 (寫成兩數(shù)平方差的形式);若將圖1中的剩余紙片沿線段AB剪開,再把剪成的兩張紙片拼成如圖2的長(zhǎng)方形,則長(zhǎng)方形的面積是 (寫成兩個(gè)多項(xiàng)式相乘的形式);比較兩圖陰影部分的面積,可以得到一個(gè)公式: ;
(2)由此可知,通過圖形的拼接可以驗(yàn)證一些等式.現(xiàn)在給你兩張邊長(zhǎng)為a的正方形紙片、三張長(zhǎng)為a,寬為b的長(zhǎng)方形紙片和一張邊長(zhǎng)為b的正方形紙片(如圖3所示),請(qǐng)你用這些紙片拼出一個(gè)長(zhǎng)方形(所給紙片要用完),并寫出它所驗(yàn)證的等式: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了準(zhǔn)備“迎新活動(dòng)”,用700元購(gòu)買了甲、乙兩種小禮品260個(gè),其中購(gòu)買甲種禮品比乙種禮品少用了100元.
(1)購(gòu)買乙種禮品花了______元;
(2)如果甲種禮品的單價(jià)比乙種禮品的單價(jià)高20%,求乙種禮品的單價(jià).(列分式方程解應(yīng)用題)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限一點(diǎn),CB⊥y軸,交y軸負(fù)半軸于B(0,b),且(a-3)2+|b+4|=0,S四邊形AOBC=16.
(1)求C點(diǎn)坐標(biāo);
(2)如圖2,設(shè)D為線段OB上一動(dòng)點(diǎn),當(dāng)AD⊥AC時(shí),∠ODA的角平分線與∠CAE的角平分線的反向延長(zhǎng)線交于點(diǎn)P,求∠APD的度數(shù).
(3)如圖3,當(dāng)D點(diǎn)在線段OB上運(yùn)動(dòng)時(shí),作DM⊥AD交BC于M點(diǎn),∠BMD、∠DAO的平分線交于N點(diǎn),則D點(diǎn)在運(yùn)動(dòng)過程中,∠N的大小是否變化?若不變,求出其值,若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠CDE=119°,GF交∠DEB的平分線EF于點(diǎn)F,∠AGF=130°,則∠F等于( )
A.9.5°
B.19°
C.15°
D.30°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com