如圖,矩形ABCD中,點(diǎn)E是BC上一點(diǎn),AD=DE,AF⊥DE,垂足為F.
求證:AF=AB.

【答案】分析:根據(jù)已知及矩形的性質(zhì)利用AAS判定△ADF≌△DEC,從而得到AF=DC,因?yàn)镈C=AB,所以AF=AB.
解答:解:∵AF⊥DE.
∴∠AFE=90°.(1分)
∵在矩形ABCD中,AD∥BC,∠C=90°.
∴∠ADF=∠DEC.(3分)
∴∠AFE=∠C=90°.(4分)
∵AD=DE.
∴△ADF≌△DEC.(7分)
∴AF=DC.
∵DC=AB.
∴AF=AB.(8分)
點(diǎn)評(píng):此題考查學(xué)生對(duì)矩形的性質(zhì)及全等三角形的判定方法的理解及運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點(diǎn),DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點(diǎn)P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點(diǎn),且BE=ED,P是對(duì)角線上任意一點(diǎn),PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點(diǎn),且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習(xí)冊(cè)答案