【題目】下面是按一定規(guī)律排列且形式相似的一列數(shù):
第1個(gè)數(shù):a1=-(1+);
第2個(gè)數(shù):a2=-(1+)[1+][1+];
第3個(gè)數(shù):a3=-(1+)[1+][1+][1+](1+].
(1)計(jì)算這三個(gè)數(shù)的結(jié)果(直接寫答案):
a1=___;a2=___;a3=___;
(2)請按上述規(guī)律寫出第4個(gè)數(shù)a4的形式并計(jì)算結(jié)果;
(3)請根據(jù)上述規(guī)律寫出第n (n為正整數(shù))個(gè)數(shù)an的形式(中間部分用省略號,兩端部分必須寫詳細(xì)),然后直接寫出計(jì)算結(jié)果.
【答案】(1)0、0、0(2)a4=0(3)an=0
【解析】
(1)直接計(jì)算這三個(gè)數(shù)的結(jié)果即可;
(2)仿照已知數(shù)列列式即可;
(3)根據(jù)題意得an=﹣(1+)[1+][1+][1+[1+]…[1+][1+]=0.
解:(1)a1=﹣(1+)=﹣(1﹣)=﹣1+=0,
a2=﹣(1﹣)(1+)(1﹣)=﹣××=﹣=0,
a3=﹣(1﹣)(1+)(1﹣)(1+ )(1﹣ )=﹣××× ×=﹣=0,
故答案為:0,0,0;
(2) a4=﹣(1+)[1+][1+][1+[1+][1+][1+]
=﹣(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)(1﹣)
=﹣××××××
=﹣
=0;
(3) an=﹣(1+)[1+][1+][1+[1+]…[1+ ][1+]=0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸的單位長度為1,如果P,Q表示的數(shù)互為相反數(shù),那么圖中的4個(gè)點(diǎn)中,哪一個(gè)點(diǎn)表示的數(shù)的平方值最大( 。
A. P B. R C. Q D. T
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,雙曲線y=與直線y=kx﹣2交于點(diǎn)A(3,1).
(1)求直線和雙曲線的解析式;
(2)直線y=kx﹣2與x軸交于點(diǎn)B,點(diǎn)P是雙曲線y=上一點(diǎn),過點(diǎn)P作直線PC∥x軸,交y軸于點(diǎn)C,交直線y=kx﹣2于點(diǎn)D.若DC=2OB,寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對外銷售,某樓盤共23層,銷售價(jià)格如下:第八層樓房售價(jià)為4000元/米2,從第八層起每上升一層,每平方米的售價(jià)提高50元;反之,樓層每下降一層,每平方米的售價(jià)降低30元,已知該樓盤每套樓房面積均為120米2.
若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:
方案一:降價(jià)8%,另外每套樓房贈送a元裝修基金;
方案二:降價(jià)10%,沒有其他贈送.
(1)請寫出售價(jià)y(元/米2)與樓層x(1≤x≤23,x取整數(shù))之間的函數(shù)關(guān)系式;
(2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計(jì)算哪種優(yōu)惠方案更加合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC放在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,點(diǎn)B,點(diǎn)C均落在格點(diǎn)上.
(1)計(jì)算AC2+BC2的值等于 ;
(2)請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出一個(gè)平行四邊形ABEF,使得該平行四邊形的面積等于16;
(3)請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出一個(gè)矩形ABMN,使得該矩形的面積等于AC2+BC2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,有一組平行線l1∥l2∥l3∥l4,正方形ABCD的四個(gè)頂點(diǎn)分別在l1,l2,l3,l4上,EG過點(diǎn)D且垂直l1于點(diǎn)E,分別交l2,l4于點(diǎn)F,G,EF=DG=1,DF=2.
(1)AE=__________,正方形ABCD的邊長=__________;
(2)如圖2,將∠AEG繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到∠AE′D′,旋轉(zhuǎn)角為α(0°<α<90°),點(diǎn)D′在直線l3上,以AD′為邊在E′D′左側(cè)作菱形AB′C′D′,使B′、C′分別在直線l2,l4上.
①寫出∠B′AD′與α的數(shù)量關(guān)系并給出證明;
②若α=30°,直接寫出菱形AB′C′D′的邊長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).直線y=kx+b與拋物線y=mx2﹣x+n同時(shí)經(jīng)過A(0,3)、B(4,0).
(1)求m,n的值.
(2)點(diǎn)M是二次函數(shù)圖象上一點(diǎn),(點(diǎn)M在AB下方),過M作MN⊥x軸,與AB交于點(diǎn)N,與x軸交于點(diǎn)Q.求MN的最大值.
(3)在(2)的條件下,是否存在點(diǎn)N,使△AOB和△NOQ相似?若存在,求出N點(diǎn)坐標(biāo),不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,某校積極開展拓展性課程建設(shè),計(jì)劃開設(shè)藝術(shù)、體育、勞技、文學(xué)等多個(gè)類別的拓展性課程,要求每一位學(xué)生都自主選擇一個(gè)類別的拓展性課程.為了了解學(xué)生選擇拓展性課程的情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖(部分信息未給出):
根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:
()求本次被調(diào)查的學(xué)生人數(shù).
()將條形統(tǒng)計(jì)圖補(bǔ)充完整.
()若該校共有名學(xué)生,請估計(jì)全校選擇體育類的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正確的結(jié)論是
A. ①②③⑤ B. ①③④ C. ②③④⑤ D. ①②⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com