(2012•黃岡)某科技開發(fā)公司研制出一種新型的產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價(jià)定為3000元,在該產(chǎn)品的試銷期間,為了促銷,鼓勵(lì)商家購(gòu)買該新型產(chǎn)品,公司決定商家一次購(gòu)買這種新型產(chǎn)品不超過10件時(shí),每件按3000元銷售;若一次購(gòu)買該種產(chǎn)品超過10件時(shí),每多購(gòu)買一件,所購(gòu)買的全部產(chǎn)品的銷售單價(jià)均降低10元,但銷售單價(jià)均不低于2600元.
(1)商家一次購(gòu)買這種產(chǎn)品多少件時(shí),銷售單價(jià)恰好為2600元?
(2)設(shè)商家一次購(gòu)買這種產(chǎn)品x件,開發(fā)公司所獲得的利潤(rùn)為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(3)該公司的銷售人員發(fā)現(xiàn):當(dāng)商家一次購(gòu)買產(chǎn)品的件數(shù)超過某一數(shù)量時(shí),會(huì)出現(xiàn)隨著一次購(gòu)買的數(shù)量的增多,公司所獲得的利潤(rùn)反而減少這一情況.為使商家一次購(gòu)買的數(shù)量越多,公司所獲得的利潤(rùn)越大,公司應(yīng)將最低銷售單價(jià)調(diào)整為多少元?(其它銷售條件不變)
分析:(1)設(shè)件數(shù)為x,則銷售單價(jià)為3000-10(x-10)元,根據(jù)銷售單價(jià)恰好為2600元,列方程求解;
(2)由利潤(rùn)y=(銷售單價(jià)-成本單價(jià))×件數(shù),及銷售單價(jià)均不低于2600元,按0≤x≤10,10<x≤50,x>50三種情況列出函數(shù)關(guān)系式;
(3)由(2)的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求利潤(rùn)的最大值,并求出最大值時(shí)x的值,確定銷售單價(jià).
解答:解:(1)設(shè)件數(shù)為x,依題意,得3000-10(x-10)=2600,解得x=50,
答:商家一次購(gòu)買這種產(chǎn)品50件時(shí),銷售單價(jià)恰好為2600元;

(2)當(dāng)0≤x≤10時(shí),y=(3000-2400)x=600x,
當(dāng)10<x≤50時(shí),y=[3000-10(x-10)-2400]x,即y=-10x2+700x
當(dāng)x>50時(shí),y=(2600-2400)x=200x
∴y=
600x(0≤x≤10,且x為整數(shù))
-10x2+700x(10<x≤50,且x為整數(shù))
200x(x>50,且x為整數(shù))


(3)由y=-10x2+700x可知拋物線開口向下,當(dāng)x=-
700
2×(-10)
=35時(shí),利潤(rùn)y有最大值,
此時(shí),銷售單價(jià)為3000-10(x-10)=2750元,
答:公司應(yīng)將最低銷售單價(jià)調(diào)整為2750元.
點(diǎn)評(píng):本題考查了二次函數(shù)的運(yùn)用.關(guān)鍵是明確銷售單價(jià)與銷售件數(shù)之間的函數(shù)關(guān)系式,會(huì)表達(dá)單件的利潤(rùn)及總利潤(rùn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黃岡)某物流公司的快遞車和貨車同時(shí)從甲地出發(fā),以各自的速度勻速向乙地行駛,快遞車到達(dá)乙地后缷完物品再另裝貨物共用45分鐘,立即按原路以另一速度勻速返回,直至與貨車相遇.已知貨車的速度為60千米/時(shí),兩車之間的距離y(千米)與貨車行駛時(shí)間x(小時(shí))之間的函數(shù)圖象如圖所示,現(xiàn)有以下4個(gè)結(jié)論:
①快遞車從甲地到乙地的速度為100千米/時(shí);
②甲、乙兩地之間的距離為120千米;
③圖中點(diǎn)B的坐標(biāo)為(3
34
,75);
④快遞車從乙地返回時(shí)的速度為90千米/時(shí),
以上4個(gè)結(jié)論正確的是
①③④
①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黃岡模擬)如圖所示,有兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤A、B,都被分成了3等份,并在每份內(nèi)均標(biāo)有數(shù)字.分別轉(zhuǎn)動(dòng)轉(zhuǎn)盤A、B,待兩個(gè)轉(zhuǎn)盤都停止后,將兩個(gè)指針?biāo)阜輧?nèi)的數(shù)字分別記作m和n(若指針停在等分線上,那么重轉(zhuǎn)一次,直到指針指向某一份為止).將m和n分別記作點(diǎn)P的橫坐標(biāo)與縱坐標(biāo),那么點(diǎn)P(m,n)在函數(shù)y=2x的圖象上的概率是多少?(用樹狀圖或列表法表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黃岡模擬)某公司生產(chǎn)一種健身自行車在市場(chǎng)上受到普遍歡迎,在國(guó)內(nèi)市場(chǎng)和國(guó)外市場(chǎng)暢銷,生產(chǎn)的產(chǎn)品可以全部出售,該公司的年生產(chǎn)能力為10萬輛,在國(guó)內(nèi)市場(chǎng)每輛的利潤(rùn)y1(元)與其銷量x(萬輛)的關(guān)系如圖所示;在國(guó)外市場(chǎng)每輛的利潤(rùn)y2(元)與其銷量x(萬輛)的關(guān)系為:y2=
-30x+320(0≤x≤6)
180(6≤x≤10)

(1)求國(guó)內(nèi)市場(chǎng)的銷售總利潤(rùn)z1(萬元)與其銷量x(萬輛)之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.
(2)求國(guó)外市場(chǎng)的銷售總利潤(rùn)z2(萬元)與國(guó)內(nèi)市場(chǎng)的銷量x(萬輛)之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.
(3)求該公司每年的總利潤(rùn)w(萬元)與國(guó)內(nèi)市場(chǎng)的銷量x(萬輛)之間的函數(shù)關(guān)系式?并幫助該公司確定國(guó)內(nèi)、國(guó)外市場(chǎng)的銷量各為多少萬輛時(shí),該公司的年利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黃岡)某服裝廠設(shè)計(jì)了一款新式夏裝,想盡快制作8800件投入市場(chǎng),服裝廠有AB兩個(gè)制衣間,A車間每天加工的數(shù)量是B車間的1.2倍,A、B兩車間共完成一半后,A車間出現(xiàn)故障停產(chǎn),剩下全部由B車間單獨(dú)完成,結(jié)果前后共用了20天完成,求A、B兩車間每天分別能加工多少件.

查看答案和解析>>

同步練習(xí)冊(cè)答案