如圖,△ABC中,∠ACB=90°,CD是斜邊AB上的高,AD=9,BD=4,那么CD=    ;AC=   
【答案】分析:根據(jù)相似三角形的判定得到△CBD∽△ACD,根據(jù)相似比可求得CD的長,再根據(jù)勾股定理即可求得AC的長.
解答:解:∵∠A+∠ACD=90°,∠ACD+∠BCD=90°
∴∠A=∠BCD
∵∠ADC=∠CDB=90°
∴△CBD∽△ACD

∵AD=9,BD=4
∴CD===6
∴AC==3
點評:此題主要考查相似三角形的判定和性質(zhì)及勾股定理的運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習冊答案