【題目】2016年3月,我市某中學(xué)舉行了“愛(ài)我中國(guó)朗誦比賽”活動(dòng),根據(jù)學(xué)生的成績(jī)劃分為A、B、C、D四個(gè)等級(jí),并繪制了不完整的兩種統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,回答下列問(wèn)題:
(1)參加朗誦比賽的學(xué)生共有人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整理;
(2)扇形統(tǒng)計(jì)圖中,m= , n=;C等級(jí)對(duì)應(yīng)扇形有圓心角為度;
(3)學(xué)校欲從獲A等級(jí)的學(xué)生中隨機(jī)選取2人,參加市舉辦的朗誦比賽,請(qǐng)利用列表法或樹(shù)形圖法,求獲A等級(jí)的小明參加市朗誦比賽的概率.

【答案】
(1)40;
(2)10;40;144
(3)解:設(shè)獲A等級(jí)的小明用A表示,其他的三位同學(xué)用a,b,c,表示:

共12種情況,其中小明參加的情況有6種,

則P(小明參加市比賽)= =


【解析】解:(1)參加比賽學(xué)生共有:12÷30%=40(人); B等級(jí)學(xué)生數(shù)是40﹣4﹣16﹣12=8(人),

·(2)m= ×100=10,n= ×100=40,C等級(jí)對(duì)應(yīng)扇形有圓心角為360°×40%=144°,
故答案為:10,40,144;
(1)由D等級(jí)人數(shù)及百分比可得總?cè)藬?shù),根據(jù)各等級(jí)人數(shù)之和等于總數(shù)可得答案;(2)根據(jù)A、C等級(jí)人數(shù)及總?cè)藬?shù)可得百分比,用360度乘以C等級(jí)百分比可得圓心角度數(shù);(3)畫(huà)樹(shù)狀圖列出所有結(jié)果,利用概率公式可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在國(guó)務(wù)院辦公廳發(fā)布《中國(guó)足球發(fā)展改革總體方案》之后,某校為了調(diào)查本校學(xué)生對(duì)足球知識(shí)的了解程度,隨機(jī)抽取了部分學(xué)生進(jìn)行一次問(wèn)卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給的信息,解答下列問(wèn)題:

(1)本次接受問(wèn)卷調(diào)查的學(xué)生總?cè)藬?shù)是
(2)扇形統(tǒng)計(jì)圖中,“了解”所對(duì)應(yīng)扇形的圓心角的度數(shù)為 , m的值為;
(3)若該校共有學(xué)生1500名,請(qǐng)根據(jù)上述調(diào)查結(jié)果估算該校學(xué)生對(duì)足球的了解程度為“基本了解”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過(guò)點(diǎn)C的切線(xiàn)垂直,垂足為點(diǎn)D,直線(xiàn)DC與AB的延長(zhǎng)線(xiàn)相交于點(diǎn)P,CE平分∠ACB,交AB于點(diǎn)E.

(1)求證:AC平分∠DAB;
(2)求證:△PCE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋中裝有4個(gè)分別標(biāo)有數(shù)1,2,3,4的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機(jī)摸出一個(gè)小球記下數(shù)為x,小穎在剩下的3個(gè)球中隨機(jī)摸出一個(gè)小球記下數(shù)為y,這樣確定了點(diǎn)P的坐標(biāo)(x,y).
(1)小紅摸出標(biāo)有數(shù)3的小球的概率是
(2)請(qǐng)你用列表法或畫(huà)樹(shù)狀圖法求點(diǎn)P(x,y)在函數(shù)y=﹣x+5圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,延長(zhǎng)AD到E,使DE=AD,連接EB,EC,DB,添加一個(gè)條件,不能使四邊形DBCE成為矩形的是(
A.AB=BE
B.BE⊥DC
C.∠ADB=90°
D.CE⊥DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:拋物線(xiàn)y=ax2+bx+c交y軸于點(diǎn)C(0,4),對(duì)稱(chēng)軸x=2與x軸交于點(diǎn)D,頂點(diǎn)為M,且DM=OC+OD,
(1)求拋物線(xiàn)的解析式;
(2)設(shè)點(diǎn)P(x,y)是第一象限內(nèi)該拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,寫(xiě)出自變量x的取值范圍,并求當(dāng)x取多少時(shí),S的值最大,最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=x﹣1與反比例函數(shù)y= 的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,已知點(diǎn)A的坐標(biāo)為(﹣1,m).
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P(n,﹣1)是反比例函數(shù)圖象上一點(diǎn),過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,延長(zhǎng)EP交直線(xiàn)AB于點(diǎn)F,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長(zhǎng)線(xiàn)上的點(diǎn),且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)若BC=8,DE=6,求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】愛(ài)好思考的小茜在探究?jī)蓷l直線(xiàn)的位置關(guān)系查閱資料時(shí),發(fā)現(xiàn)了“中垂三角形”,即兩條中線(xiàn)互相垂直的三角形稱(chēng)為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線(xiàn),AM⊥BN于點(diǎn)P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
(1)【特例探究】
如圖1,當(dāng)tan∠PAB=1,c=4 時(shí),a= , b=;
如圖2,當(dāng)∠PAB=30°,c=2時(shí),a= , b=;

(2)【歸納證明】
請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來(lái),并利用圖3證明你的結(jié)論.

(3)【拓展證明】
如圖4,ABCD中,E、F分別是AD、BC的三等分點(diǎn),且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點(diǎn)G,AD=3 ,AB=3,求AF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案