如圖,ABCD為正方形,E是BC的中點(diǎn),CF平分∠DCM,EF⊥AE.(1)猜想線段AE與EF的數(shù)量關(guān)系,并說明理由.

(2)如圖,E是BC上任一點(diǎn),其他條件不變,則上述結(jié)論是否仍然成立?說明理由.

答案:
解析:

  (1)AEEF.取AB中點(diǎn)P,連接PE,在正方形ABCD中,ABBC

  ∵APAB,ECBC,∴APEC,∠BPE=∠FCM,∴-∠BPE-∠FCM,即∠APE=∠ECF.∵∠B=∠AEF,∴∠BAE-∠AEB,∠CEF-∠AEB,∴∠BAE=∠CEF,∴△APE≌△ECF(ASA),∴AEEF

  (2)上述結(jié)論仍成立,即AEAF.證明如下:在AB上取BPBE,連接PE

  ∴∠BPE=∠BEP.∵∠B,

  ∴∠BPE,∴∠APE-∠BPE.∵CF平分∠DCM且∠DCM,∴∠FCM,∴∠ECF-∠FCM,∴∠APE=∠ECF.∵∠B=∠AEF,∠BAE-∠AEB,∠CEF-∠AEB,∴∠BAE=∠CEF,∵ABBC,∴ABBPBCBE,即APEC,∴△APE≌△ECF,∴AEEF


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,在正方ABCD中,E是AB邊上任一點(diǎn),BG⊥CE,垂足為O,交AC于點(diǎn)F,交AD于點(diǎn)G.
(1)證明BE=AG;
(2)E位于什么位置時(shí),∠AEF=∠CEB?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課題學(xué)習(xí):
(1)如圖1,E、F、G、H分別是正方形ABCD各邊的中點(diǎn),則四邊形EFGH是
正方
正方
形,正方形ABCD的面積記為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2

(2)如圖2,E、F、G、H分別是菱形ABCD各邊的中點(diǎn),則四邊形EFGH是
形,菱形ABCD的面積為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2

(3)如圖3,梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,垂足為O,E、F、G、H分別為各邊的中點(diǎn).四邊形EFGH是
形;若梯形ABCD的面積記為S1,四邊形EFGH的面積記為S2,由圖可猜想S1和S2間的數(shù)量關(guān)系為:
S1=2S2
S1=2S2

(4)如圖4,E、G分別是平行四邊形ABCD的邊AB、DC的中點(diǎn),H、F分別是邊形AD、BC上的點(diǎn),且四邊形EFGH為平行四邊形,若把平行四邊形ABCD的面積記為S1,把平行四邊形形EFGH的面積記為S2,試猜想S1和S2間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省無錫市前洲中學(xué)九年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,四邊形ABCD的邊AB在X軸上,A與O重合,CD∥AB,D(0,),直線AE與CD交于E,DE=6。以BE為折痕,把點(diǎn)A翻恰好與點(diǎn)C重合;動(dòng)點(diǎn)P從點(diǎn)D出發(fā)沿著D→C→B→O路徑勻速運(yùn)動(dòng),速度為每秒4個(gè)單位;以P為圓心的⊙P半徑每秒增加個(gè)單位,當(dāng)點(diǎn)P在點(diǎn)D處時(shí),⊙P半徑為;直線AE沿y軸正方向向上平移,速度為每秒個(gè)單位;直線AE、⊙P同時(shí)出發(fā),當(dāng)點(diǎn)P到終點(diǎn)O時(shí)兩者都停止,運(yùn)動(dòng)時(shí)間為t;

(1) 求點(diǎn)B的坐標(biāo);
(2)求當(dāng)直線AE與⊙P相切時(shí)t的值;
(3) 在整個(gè)運(yùn)動(dòng)過程中直線AE與⊙P相交的時(shí)間共有幾秒?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市九年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,四邊形ABCD的邊AB在X軸上,A與O重合,CD∥AB,D(0,),直線AE與CD交于E,DE=6。以BE為折痕,把點(diǎn)A翻恰好與點(diǎn)C重合;動(dòng)點(diǎn)P從點(diǎn)D出發(fā)沿著D→C→B→O路徑勻速運(yùn)動(dòng),速度為每秒4個(gè)單位;以P為圓心的⊙P半徑每秒增加個(gè)單位,當(dāng)點(diǎn)P在點(diǎn)D處時(shí),⊙P半徑為;直線AE沿y軸正方向向上平移,速度為每秒個(gè)單位;直線AE、⊙P同時(shí)出發(fā),當(dāng)點(diǎn)P到終點(diǎn)O時(shí)兩者都停止,運(yùn)動(dòng)時(shí)間為t;

(1) 求點(diǎn)B的坐標(biāo);

(2)求當(dāng)直線AE與⊙P相切時(shí)t的值;

(3) 在整個(gè)運(yùn)動(dòng)過程中直線AE與⊙P相交的時(shí)間共有幾秒?(直接寫出答案)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:重慶市期末題 題型:證明題

如圖,AC為正方ABCD形的一條對(duì)角線,點(diǎn)E為DA邊延長(zhǎng)線上的一點(diǎn),連接BE,在BE上取一點(diǎn)F,使BF=BC,過點(diǎn)B作BK⊥BE于B,交AC于點(diǎn)K,連接CF,交AB于點(diǎn)H,交BK于點(diǎn)G。
(1)求證:BH=BG;
(2)求證:BE=BG+AE。

查看答案和解析>>

同步練習(xí)冊(cè)答案