精英家教網 > 初中數學 > 題目詳情
已知:如圖,在正方形ABCD中,E、F分別是AD、CD的中點.
(1)線段AF與BE有何關系.說明理由;
(2)延長AF、BC交于點H,則B、D、G、H這四個點是否在同一個圓上.說明理由.

【答案】分析:(1)證明△ABE≌△DAF,證據全等三角形的對應邊相等,以及直角三角形的兩銳角互余即可證明AF相等且互相垂直;
(2)證明△ADF≌△HCF,依據直角三角形斜邊上的中線等于斜邊的一半,即可證得B,C,D,H四點到C的距離相等,即可證得四點共圓.
解答:解:(1)AF=BE且AF⊥BE.
證明:∵E、F分別是AD、CD的中點,
∴AE=AD,DF=CD
∴AE=DF
又∵∠BAD=∠D=90°,AB=AD
∴△ABE≌△DAF
∴AF=BE,∠AEB=∠AFD
∵在直角△ADF中,∠DAF+∠AFD=90°
∴∠DAF+∠AEB=90°
∴∠AGE=90°
∴AF⊥BE
(2)連接CG.
∵DF=CF,∠D=∠FCH=90°,∠AFD=∠HFC
∴△ADF≌△HCF
∴BC=AD=CH=CD,
在直角△BGH中,BC=CH,
∴GC=BH
∴CB=CG=CD=CH,
∴B,G,D,H在以C為圓心、BC長為半徑的圓上.
點評:本題考查了全等三角形的判定與性質,以及直角三角形的性質,證明三角形全等是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:如圖,在正方形ABCD中,E是CB延長線上一點,EB=
12
BC,如果F是AB的中點,請你在正方形ABCD上找一點,與F點連接成線段,并說明它和AE相等的理由.
解:連接
 
,則
 
=AE.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=
5
.下列結論:
①△APD≌△AEB;
②點B到直線AE的距離為
2
;
③EB⊥ED;
④S△APD+S△APB=1+
6
;
⑤S正方形ABCD=4+
6
.其中正確結論的序號是(  )
A、①③④B、①②⑤
C、③④⑤D、①③⑤

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,在正方形ABCD中,P是BC上的點,且BP=3PC,Q是CD的中點.△ADQ與△QCP是否相似?
為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,在正方形ABCD中,AB=8,點E在邊AB上點,CE的垂直平分線FP 分別交AD精英家教網、CE、CB于點F、H、G,交AB的延長線于點P.
(1)求證:△EBC∽△EHP;
(2)設BE=x,BP=y,求y與x之間的函數解析式,并寫出定義域;
(3)當BG=
74
時,求BP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,在正方形ABCD中,E、F分別是AD、CD的中點.
(1)線段AF與BE有何關系.說明理由;
(2)延長AF、BC交于點H,則B、D、G、H這四個點是否在同一個圓上.說明理由.

查看答案和解析>>

同步練習冊答案