【題目】如圖,正方形ABCD的邊長為2,P為CD的中點(diǎn),連結(jié)AP,過點(diǎn)B作BE⊥AP于點(diǎn)E,延長CE交AD于點(diǎn)F,過點(diǎn)C作CH⊥BE于點(diǎn)G,交AB于點(diǎn)H,連接HF.下列結(jié)論正確的是(  )

A. CE= B. EF= C. cos∠CEP= D. HF2=EFCF

【答案】D

【解析】

首先證明AH=HB,推出BG=EG,推出CB=CE,再證明△CBH≌△CEH,RtHFERtHFA,利用全等三角形的性質(zhì)即可一一判斷.

連接

四邊形ABCD是正方形,

CD=AB=BC=AD=2,CDAB,

BEAP,CGBE

CHPA,

∴四邊形是平行四邊形,

CP = AH,

CP=PD=1,

AH=PC=1,

AH=BH,

RtABE中,∵AH=HB,

EH=HB,∵HCBE,

BG=EG

CB=CE=2,故選項(xiàng)A錯(cuò)誤,

CH=CH,CB=CE,HB=HE,

∴△CBH≌△CEH,

∴∠CBH=CEH=90°,

HF=HF,HE=HA

RtHFERtHFA,

AF=EF,設(shè)EF=AF=x

RtCDF中,有22+(2-x)2=(2+x)2

x= ,

EF=∴,故B錯(cuò)誤,

PACH,

∴∠CEP=ECH=BCH,

cosCEP=cosBCH== ,故C錯(cuò)誤.

HF= EF= ,FC=

HF2=EF·FC,故D正確,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點(diǎn).

觀察圖象可知:

①當(dāng)x=﹣3或1時(shí),y1=y2;

②當(dāng)﹣3<x<0或x>1時(shí),y1>y2,即通過觀察函數(shù)的圖象,可以得到不等式ax+b>的解集.

有這樣一個(gè)問題:求不等式x3+4x2﹣x﹣4>0的解集.

某同學(xué)根據(jù)學(xué)習(xí)以上知識(shí)的經(jīng)驗(yàn),對(duì)求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.

下面是他的探究過程,請將(2)、(3)、(4)補(bǔ)充完整:

(1)將不等式按條件進(jìn)行轉(zhuǎn)化:

當(dāng)x=0時(shí),原不等式不成立;

當(dāng)x>0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1>;

當(dāng)x<0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1<;

(2)構(gòu)造函數(shù),畫出圖象

設(shè)y3=x2+4x﹣1,y4=,在同一坐標(biāo)系中分別畫出這兩個(gè)函數(shù)的圖象.

雙曲線y4=如圖2所示,請?jiān)诖俗鴺?biāo)系中畫出拋物線y3=x2+4x﹣1;(不用列表)

(3)確定兩個(gè)函數(shù)圖象公共點(diǎn)的橫坐標(biāo)

觀察所畫兩個(gè)函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗(yàn)證可知:滿足y3=y4的所有x的值為   ;

(4)借助圖象,寫出解集

結(jié)合(1)的討論結(jié)果,觀察兩個(gè)函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知A點(diǎn)的坐標(biāo)為A(﹣2,0).

(1)求拋物線的解析式及它的對(duì)稱軸;

(2)求點(diǎn)C的坐標(biāo),連接AC、BC并求線段BC所在直線的解析式;

(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀對(duì)話,解答問題:

1)分別用a、b表示小冬從小麗、小兵袋子中抽出的卡片上標(biāo)有的數(shù)字,請用樹狀圖法或列表法寫出(a,b)的所有取值;

2)求在(ab)中使關(guān)于x的一元二次方程x2﹣ax+2b=0有實(shí)數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某銷售商準(zhǔn)備在南充采購一批絲綢,經(jīng)調(diào)查,用10000元采購A型絲綢的件數(shù)與用8000元采購B型絲綢的件數(shù)相等,一件A型絲綢進(jìn)價(jià)比一件B型絲綢進(jìn)價(jià)多100元.

(1)求一件A型、B型絲綢的進(jìn)價(jià)分別為多少元?

(2)若銷售商購進(jìn)A型、B型絲綢共50件,其中A型的件數(shù)不大于B型的件數(shù),且不少于16件,設(shè)購進(jìn)A型絲綢m件.

①求m的取值范圍.

②已知A型的售價(jià)是800元/件,銷售成本為2n元/件;B型的售價(jià)為600元/件,銷售成本為n元/件.如果50≤n≤150,求銷售這批絲綢的最大利潤w(元)與n(元)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A1,4),B42),C35)(每個(gè)方格的邊長均為1個(gè)單位長度).

1)請畫出△A1B1C1,使△A1B1C1△ABC關(guān)于x軸對(duì)稱;

2)將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是某小區(qū)入口實(shí)景圖,圖2是該入口抽象成的平面示意圖.已知入口BC3.9米,門衛(wèi)室外墻AB上的O點(diǎn)處裝有一盞路燈,點(diǎn)O與地面BC的距離為3.3米,燈臂OM長為1.2米(燈罩長度忽略不計(jì)),∠AOM60°.

1)求點(diǎn)M到地面的距離;

2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進(jìn)入時(shí),貨車需與護(hù)欄CD保持0.65米的安全距離,此時(shí),貨車能否安全通過?若能,請通過計(jì)算說明;若不能,請說明理由.(參考數(shù)據(jù):1.73,結(jié)果精確到0.01米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,經(jīng)過原點(diǎn)O的拋物線(a0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).

(1)求這條拋物線的表達(dá)式;

(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);

(3)如圖2,若點(diǎn)M在這條拋物線上,且MBO=ABO,在(2)的條件下,是否存在點(diǎn)P,使得POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案