已知拋物線y=ax2+bx+c的圖象如圖,則下列結(jié)論:①abc>0;②a+b+c=2;③a>;④b<1.其中正確的結(jié)論是   
【答案】分析:由拋物線的開(kāi)口方向判斷a與0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱(chēng)軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
解答:解:①∵拋物線的開(kāi)口向上,∴a>0,
∵與y軸的交點(diǎn)為在y軸的負(fù)半軸上,∴c<0,
∵對(duì)稱(chēng)軸為x=<0,∴a、b同號(hào),即b>0,
∴abc<0,故①錯(cuò)誤;
②當(dāng)x=1時(shí),函數(shù)值為2>0,
∴②a+b+c=2對(duì)
當(dāng)x=-1時(shí),函數(shù)值=0,
即a-b+c=0,(1)
又a+b+c=2,
將a+c=2-b代入(1),
2-2b=0,
∴b=1
所以④b<1錯(cuò)誤;
③∵對(duì)稱(chēng)軸x=->-1,
解得:<a,
∵b=1,
∴a>,
所以③對(duì);
故其中正確的結(jié)論是②③.
點(diǎn)評(píng):二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)的確定:
(1)a由拋物線開(kāi)口方向確定:開(kāi)口方向向上,則a>0;否則a<0.
(2)b由對(duì)稱(chēng)軸和a的符號(hào)確定:由對(duì)稱(chēng)軸公式x=判斷符號(hào).
(3)c由拋物線與y軸的交點(diǎn)確定:交點(diǎn)在y軸正半軸,則c>0;否則c<0.
(4)b2-4ac由拋物線與x軸交點(diǎn)的個(gè)數(shù)確定:2個(gè)交點(diǎn),b2-4ac>0;1個(gè)交點(diǎn),b2-4ac=0;沒(méi)有交點(diǎn),b2-4ac<0.
(5)當(dāng)x=1時(shí),可確定a+b+c的符號(hào),當(dāng)x=-1時(shí),可確定a-b+c的符號(hào).
(6)由對(duì)稱(chēng)軸公式x=,可確定2a+b的符號(hào).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A(-2,0),B(0,-4),C(2,-4)三點(diǎn),且精英家教網(wǎng)與x軸的另一個(gè)交點(diǎn)為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點(diǎn)D的坐標(biāo)和對(duì)稱(chēng)軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=ax2和直線y=kx的交點(diǎn)是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、已知拋物線y=ax2+bx+c的開(kāi)口向下,頂點(diǎn)坐標(biāo)為(2,-3),那么該拋物線有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點(diǎn)P在x軸上,與y軸交于點(diǎn)Q,過(guò)坐標(biāo)原點(diǎn)O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過(guò)點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過(guò)第三象限.
(1)使用a、c表示b;
(2)判斷點(diǎn)B所在象限,并說(shuō)明理由;
(3)若直線y2=2x+m經(jīng)過(guò)點(diǎn)B,且于該拋物線交于另一點(diǎn)C(
ca
,b+8
),求當(dāng)x≥1時(shí)y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案