如圖,在平面直角坐標(biāo)系中,∆ABO中,∠AOB=90°,∠ABO=45°,OB=12cm,
O為坐標(biāo)原點(diǎn),直線OB為x軸,矩形DEFG的長(zhǎng)DE=12cm, 寬EF=6cm,以DE為直徑在矩形內(nèi)作半圓O1,矩形及半圓O1整體以2cm/s的速度從左向右運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,點(diǎn)D、E始終在x軸上,設(shè)運(yùn)動(dòng)時(shí)間為x(s),矩形和∆ABO的重疊部分的面積為S(cm2).當(dāng)x=0(s)時(shí),點(diǎn)E與點(diǎn)O重合(如圖1)(圖(2)、圖(3)、圖(4)供操作用).
(1)當(dāng)x=3時(shí),求直線AG的解析式;
(2)當(dāng)0<x<9時(shí),求S關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)x為何值時(shí),∆ ABC的斜邊所在的直線與半圓O1所在的圓相切?
(1)y=x+12
(2)當(dāng)0<x≤3時(shí),S=12x;
當(dāng)3<x≤6時(shí)設(shè)矩形DEFG與斜邊AB的交點(diǎn)分別為N、H,與直角邊AO的交點(diǎn)為M.
BE=12-2x,AM=12-6=6
∴S=S∆ABO -S∆AMN -S∆BHE =×12×12-×6×6-×(12-2x)2 =-2x2 +24x-18
當(dāng)6<x≤9時(shí),設(shè)矩形DEFG與斜邊AB的交點(diǎn)為M,延長(zhǎng)FG交AO于點(diǎn)H
AH=12-6=6,HG=2x-12
∴S=S∆ABO-S∆AHM-S矩形HCDG = ×12×12-×6×6-×6×(2x-12)=-12x+126,所以, 當(dāng)6<x<9時(shí),S=-12x+126
(3)①過(guò)點(diǎn)O作OD⊥AB于點(diǎn)D,由題意得OD=6,∵∠ABO=45°,∠ODB=90°
∴OB==6,∴x1=
②過(guò)點(diǎn)O作OE⊥AB,交AB的延長(zhǎng)線于點(diǎn)E,由題意得OE=6
∵∠OBE=45°,∠OEB=90°,∴OB==6,
∴x2=,
故當(dāng)x等于(9-)秒或(9+)秒時(shí),△ABO的斜邊所在的直線與半圓O1所在的圓相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com